skip to Main Content

Buy generic aldactone online

September 24, 2020 (TORONTO) — Canada Health Infoway (Infoway) and CloudMD are pleased to announce that they have reached buy generic aldactone online an agreement aldactone plus to advance e-prescribing in Canada. PrescribeIT® is Infoway’s national e-prescribing service that enables prescribers and pharmacists to electronically create, receive, renew and cancel prescriptions, while improving overall patient care through secure clinician messaging.Under the agreement, CloudMD will integrate its Juno electronic medical record (EMR) with PrescribeIT’s solution infrastructure. CloudMD is buy generic aldactone online aiming to have the technical work completed in early 2021.

Once complete, physicians and nurse practitioners who offer virtual consultations with patients will be able to send prescriptions electronically from their EMR to the patient’s pharmacy of choice, and pharmacies will be able to request prescription renewals electronically from the patient’s prescriber.“We are excited to partner with Infoway because we believe a national, modern e-prescribing service will engender greater patient trust and confidence in prescriptions,” said Essam Hamza, MD, Chief Executive Officer of CloudMD. €œThe enhanced buy generic aldactone online security offered by PrescribeIT® will be beneficial to health providers and patients who use CloudMD’s services.”CloudMD provides virtual medical care to a combined network of 376 clinics, more than 3,000 licensed practitioners and almost three million patients through its technology components.“We look forward to working with CloudMD to make PrescribeIT® more widely available across the country,” said Jamie Bruce, Executive Vice President, Infoway. €œPrescribeIT® makes prescribing safer, more secure, easier and more convenient by eliminating the use of paper and faxed prescriptions, resulting in better health outcomes for Canadians.”About CloudMDCloudMD (TSXV.

DOC, OTC buy generic aldactone online. DOCRF) is digitizing the delivery of healthcare by providing patients access to all points of their care from their phone, tablet or desktop computer. The Company offers SAAS based health technology solutions to medical clinics across Canada and has buy generic aldactone online developed proprietary technology that delivers quality healthcare through the combination of connected primary care clinics, telemedicine and artificial intelligence (AI).

CloudMD currently provides service to a combined ecosystem of 376 clinics, more than 3,000 licensed practitioners and almost three million patient charts across its servers. Visit cloudmd.ca.About Canada Health InfowayInfoway helps to improve the health of Canadians by working with partners to accelerate the development, adoption and effective use of digital health across Canada buy generic aldactone online. Through our investments, we help deliver better quality and access to care and more efficient delivery of health services for patients and clinicians.

Infoway is an independent, not-for-profit organization funded by the buy generic aldactone online federal government. Visit www.infoway-inforoute.ca.About PrescribeIT®Canada Health Infoway is working with Health Canada, the provinces and territories, and industry stakeholders to develop, operate and maintain the national e-prescribing service known as PrescribeIT®. PrescribeIT® will serve all Canadians, pharmacies and prescribers and provide safer and more effective medication management by enabling prescribers to transmit a prescription electronically between a prescriber’s electronic medical record (EMR) and buy generic aldactone online the pharmacy management system (PMS) of a patient’s pharmacy of choice.

PrescribeIT® will protect Canadians’ personal health information from being sold or used for commercial activities. Visit www.PrescribeIT.ca.-30-Media Inquiries Karen SchmidtDirector, Corporate/Internal CommunicationsCanada Health Infoway(416) 886-4967 Email UsFollow @InfowayJulia BeckerVice President, Investor buy generic aldactone online RelationsCloudMDThis email address is being protected from spambots. You need JavaScript enabled to view it.Inquiries about PrescribeIT®August 18, 2020 (TORONTO) — Canada Health Infoway (Infoway) and Loblaw Companies Limited (Loblaw) are pleased to announce that they have reached an agreement to advance e-prescribing in Canada.

Under the agreement, Shoppers Drug Mart, Loblaw retail pharmacies and QHR Technologies’ AccuroEMR®, Canada’s largest single electronic medical record platform, will work towards connecting with PrescribeIT®, Infoway’s national e-prescribing service.As a first step in the initiative, Shoppers Drug Mart and Loblaw will begin to roll out PrescribeIT® in pharmacies already using software that is integrated buy generic aldactone online with PrescribeIT®. “This agreement will accelerate the adoption of e-prescribing in Canada, bringing significant benefits to patients, prescribers and health care systems across the country,” said Ashesh Desai, Executive Vice President Pharmacy and Healthcare Businesses at Shoppers Drug Mart.“PrescribeIT® has shown tremendous momentum since it launched,” said Michael Green, President and CEO of Infoway. €œThis is an important expansion for PrescribeIT® and will help extend the benefits of the service more broadly.”Loblaw will continue to operate FreedomRx, the e-prescribing and messaging platform that is currently available predominantly to Loblaw and Shoppers Drug Mart pharmacies and physicians using AccuroEMR® as their electronic medical records system.About Canada Health InfowayInfoway helps to improve the health of Canadians by working with partners to accelerate buy generic aldactone online the development, adoption and effective use of digital health across Canada.

Through our investments, we help deliver better quality and access to care and more efficient delivery of health services for patients and clinicians. Infoway is an independent, not-for-profit organization buy generic aldactone online funded by the federal government. Visit www.infoway-inforoute.ca.About PrescribeIT®Canada Health Infoway is working with Health Canada, the provinces and territories, and industry stakeholders to develop, operate and maintain the national e-prescribing service known as PrescribeIT®.

PrescribeIT® will serve all Canadians, pharmacies and prescribers and provide safer and more effective medication management by buy generic aldactone online enabling prescribers to transmit a prescription electronically between a prescriber’s electronic medical record (EMR) and the pharmacy management system (PMS) of a patient’s pharmacy of choice. PrescribeIT® will protect Canadians’ personal health information from being sold or used for commercial activities. Visit www.PrescribeIT.ca.About Loblaw Companies LimitedLoblaw is Canada's buy generic aldactone online food and pharmacy leader, and the nation's largest retailer.

Loblaw provides Canadians with grocery, pharmacy, health and beauty, apparel, general merchandise, financial services and wireless mobile products and services. With more than 2,400 corporate, franchised and Associate-owned locations, Loblaw, its franchisees and associate-owners employ approximately 200,000 full- and part-time employees, making it one of Canada's largest private sector employers.Loblaw's purpose buy generic aldactone online – Live Life Well® – puts first the needs and well-being of Canadians who make one billion transactions annually in the company's stores. Loblaw is positioned to meet and exceed those needs in many ways.

Convenient locations buy generic aldactone online. More than 1,050 grocery stores that span the value spectrum from discount to specialty. Full-service pharmacies at nearly buy generic aldactone online 1,400 Shoppers Drug Mart® and Pharmaprix® locations and close to 500 Loblaw locations.

PC Financial® services. Affordable Joe buy generic aldactone online Fresh® fashion and family apparel. And three of Canada's top-consumer brands in Life Brand, no name® and President's Choice.

For more information, visit Loblaw's website at www.loblaw.ca.-30-Media buy generic aldactone online Inquiries Karen SchmidtDirector, Corporate/Internal CommunicationsCanada Health Infoway(416) 886-4967 Email UsFollow @InfowayCatherine ThomasSenior Director, External CommunicationLoblaw Companies Limited This email address is being protected from spambots. You need JavaScript enabled to view it.Inquiries about PrescribeIT®.

Aldactone para acne

Aldactone
Velcade
Diamox
Sustiva
Trecator sc
Strattera
Buy with discover card
19h
5h
16h
1h
1h
6h
Brand
Ask your Doctor
Yes
Ask your Doctor
Ask your Doctor
Yes
Yes
Does work at first time
Memory problems
Muscle pain
Memory problems
Abnormal vision
Memory problems
Flushing
Buy with amex
100mg 60 tablet $98.95
$
250mg 120 tablet $99.95
$
$
10mg 180 tablet $160.80
Generic
Yes
No
Yes
Small dose
Can you get a sample
No
No
Yes
Yes
Yes
Yes

Under the stewardship of the MidMichigan Health go to this web-site Foundation, this year, 23 area aldactone para acne students will received scholarship awards from the Tolfree Scholarship, the Dr. George Schaiberger, Sr., aldactone para acne Dr. Howard VanOosten and Dr. Lloyd Wiegerink Medical Scholarship, aldactone para acne and the Paul A.

Poling Memorial Scholarship.Awardees receiving the Dr. George Schaiberger, Sr., aldactone para acne Dr. Howard VanOosten and Dr. Lloyd Wiegerink Medical Staff aldactone para acne Memorial Scholarship are.

Allie Morand, Camden Groff, Nicholas Morse, Anna Erickson, Emily Terry, Brooke Chenette, Tyler Walters, Austin Raymond, Jordan Williams, Andrew Waack, Rylie Alward, Nicholas Thomas and Madison Nachtrieb aldactone para acne. Those receiving the Tolfree Scholarship are. Allie Morand, Nicholas Morse, Anna Erickson, Emily aldactone para acne Terry and Andrew Waack. Lastly, awardees receiving the Paul A.Poling Memorial Scholarship are Emily Terry, Anna Erickson, Nicholas Morse, Allie Morand and Andrew Waack.“The intent of our generous donors in creating these scholarships is to provide our rural counties, particularly those served by MidMichigan Medical Center – West Branch, with future generations of excellent health care professionals,” said Nicole Potter, director, MidMichigan Health Foundation.

€œWe congratulate all of this year’s recipients, as well as the parents and teachers who help them arrive at this major milestone aldactone para acne in these students’ lives. We wish each one of them the best of success and hope to see them back again in a few years serving the people of their own hometown.”Examples of the health professions being pursued by these individuals include physical therapy, pre-medicine, nursing, health administration, sports medicine, neuroscience and human biology.Applications for the 2021-2022 school year will be accepted from Dec. 1, 2020, through March aldactone para acne 1, 2021. Those interested aldactone para acne in reviewing the eligibility guidelines, including a scholarship application, may visit www.midmichigan.org/scholarships or call (989) 343-3694.Growers donate produce to staff and patients at MidMichigan Health Park – Bay.Residents in the Bay area have an additional opportunity to embrace healthy lifestyles near MidMichigan Health Park – Bay.

Produce by the Park, a community garden that began late last year with a donation from MidMichigan Health Foundation, is flourishing, allowing patients, friends and neighbors to literally enjoy the fruits of their labor.Brenda Turner, director, MidMichigan Physicians Group, has a farming background and dreamt of a garden for her community for years. When the Health Park was built with ample property behind and support from the Foundation, that dream was brought to life.“We are so pleased to be able to support this project as it represents very well MidMichigan Health’s aldactone para acne purpose of building healthy communities – together,” said Denise O’Keefe, executive director, MidMichigan Health Foundation.Other local organizations came on board to offer help. Tri-County Equipment of Saginaw donated dirt, and the Agriscience classes at https://www.voiture-et-handicap.fr/buy-generic-aldactone-online/ John Glenn High School volunteered to get plots prepared for gardening. The Building Trades program at Bay Arenac ISD built and installed a aldactone para acne tool shed.

Woodchips from Weiler Tree Service were donated to cut down on weeding, and Nature’s Own Landscaping and Irrigation hooked up a spigot in a central location so that all gardeners could access it easily.“During our first season, we had just a few plots of our two-acre garden assigned and less than ten participants,” said Ashleigh Palmer, practice manager, MidMichigan Health Park – Bay. €œThis year, we have all plots filled aldactone para acne with more than 40 participants. We have couples, families and individuals who share their experience, produce and aldactone para acne recipes with each other. It’s a lot of fun to see the friendships that have developed among our gardeners.

The ground is fertile, so produce is thriving, and excess vegetables are being donated to patients of the facility.”Jarod Morse, 21, saw aldactone para acne the garden information on Facebook and is excited to be participating. €œMy whole family - brother, sister and her fiancé, mom, and Papa - are working on the garden together,” Morse stated. A few of the items they are growing are cabbage, aldactone para acne cauliflower and a variety of peppers. €œThe best part,” he added, “is getting to share knowledge and smiles with other members of the garden.”Rows of produce growing in the community garden, Produce by the Park.MidMichigan Health staffers Shelby Kuch and Kellie Picard do much of the organizing, serving as “garden ambassadors.” They are excited to see it thriving.“It has been fun to see how each person has their own unique approach to gardening and harvesting,” said Kuch.

€œThere are so many things being aldactone para acne grown. Cabbage, corn, aldactone para acne potatoes, broccoli, tomatoes, and beautiful sunflowers. You wouldn’t believe the variety and the willingness to share what is harvested with other gardeners, members of the community and patients.”Picard is pleased to see elderly residents becoming involved. €œMany don’t have the room to plant where they live,” aldactone para acne she explained.

€œThis place gives them a chance to be outside, grow their own food, socialize with others and get some exercise. It’s inspiring to see their work pay off in so many ways.”Those who are interested aldactone para acne in securing a plot must fill out an application and waiver, and agree to the terms set by Produce by the Park. All skill levels are welcome and there is no cost associated with securing a plot.“Our goal has evolved,” said Palmer. €œWe hope to build upon this year’s successes to increase food security by providing access to fresh, healthy foods while reinforcing ties to aldactone para acne the environment and encouraging community members to work together.

I think we are well on our way.”Those interested in more information on the Produce by the Park or to request an application may visit www.midmichigan.org/bay/garden or contact Palmer at (989) 778-2888 or ashleigh.palmer@midmichigan.org..

Under the stewardship of the buy generic aldactone online MidMichigan Health Foundation, this year, 23 area students will received scholarship awards from the Tolfree Scholarship, the https://www.voiture-et-handicap.fr/buy-generic-aldactone-online/ Dr. George Schaiberger, buy generic aldactone online Sr., Dr. Howard VanOosten and Dr. Lloyd Wiegerink Medical Scholarship, and the Paul A buy generic aldactone online. Poling Memorial Scholarship.Awardees receiving the Dr.

George Schaiberger, buy generic aldactone online Sr., Dr. Howard VanOosten and Dr. Lloyd Wiegerink Medical Staff Memorial Scholarship are buy generic aldactone online. Allie Morand, Camden Groff, Nicholas Morse, Anna Erickson, Emily Terry, Brooke Chenette, Tyler Walters, buy generic aldactone online Austin Raymond, Jordan Williams, Andrew Waack, Rylie Alward, Nicholas Thomas and Madison Nachtrieb. Those receiving the Tolfree Scholarship are.

Allie Morand, Nicholas buy generic aldactone online Morse, Anna Erickson, Emily Terry and Andrew Waack. Lastly, awardees receiving the Paul A.Poling Memorial Scholarship are Emily Terry, Anna Erickson, Nicholas Morse, Allie Morand and Andrew Waack.“The intent of our generous donors in creating these scholarships is to provide our rural counties, particularly those served by MidMichigan Medical Center – West Branch, with future generations of excellent health care professionals,” said Nicole Potter, director, MidMichigan Health Foundation. €œWe congratulate all of this year’s recipients, buy generic aldactone online as well as the parents and teachers who help them arrive at this major milestone in these students’ lives. We wish each one of them the best of success and hope to see them back again in a few years serving the people of their own hometown.”Examples of the health professions being pursued by these individuals include physical therapy, pre-medicine, nursing, health administration, sports medicine, neuroscience and human biology.Applications for the 2021-2022 school year will be accepted from Dec. 1, 2020, through March 1, 2021 buy generic aldactone online.

Those interested in reviewing the eligibility guidelines, including a scholarship application, may visit www.midmichigan.org/scholarships or call (989) 343-3694.Growers donate produce to staff and patients at MidMichigan Health buy generic aldactone online Park – Bay.Residents in the Bay area have an additional opportunity to embrace healthy lifestyles near MidMichigan Health Park – Bay. Produce by the Park, a community garden that began late last year with a donation from MidMichigan Health Foundation, is flourishing, allowing patients, friends and neighbors to literally enjoy the fruits of their labor.Brenda Turner, director, MidMichigan Physicians Group, has a farming background and dreamt of a garden for her community for years. When the Health Park was built with ample property behind and support from the Foundation, that dream was brought to life.“We are so pleased to be able to support this project as it represents very well MidMichigan Health’s purpose of building healthy communities – together,” said Denise O’Keefe, executive director, MidMichigan Health Foundation.Other buy generic aldactone online local organizations came on board to offer help. Tri-County Equipment find here of Saginaw donated dirt, and the Agriscience classes at John Glenn High School volunteered to get plots prepared for gardening. The Building Trades program at Bay Arenac ISD built and installed a buy generic aldactone online tool shed.

Woodchips from Weiler Tree Service were donated to cut down on weeding, and Nature’s Own Landscaping and Irrigation hooked up a spigot in a central location so that all gardeners could access it easily.“During our first season, we had just a few plots of our two-acre garden assigned and less than ten participants,” said Ashleigh Palmer, practice manager, MidMichigan Health Park – Bay. €œThis year, we have all plots filled with more than 40 buy generic aldactone online participants. We have couples, families and buy generic aldactone online individuals who share their experience, produce and recipes with each other. It’s a lot of fun to see the friendships that have developed among our gardeners. The ground is fertile, so produce is thriving, and excess vegetables are being donated to patients of the facility.”Jarod Morse, 21, saw the garden information on buy generic aldactone online Facebook and is excited to be participating.

€œMy whole family - brother, sister and her fiancé, mom, and Papa - are working on the garden together,” Morse stated. A few of the items they are growing are cabbage, cauliflower and a variety buy generic aldactone online of peppers. €œThe best part,” he added, “is getting to share knowledge and smiles with other members of the garden.”Rows of produce growing in the community garden, Produce by the Park.MidMichigan Health staffers Shelby Kuch and Kellie Picard do much of the organizing, serving as “garden ambassadors.” They are excited to see it thriving.“It has been fun to see how each person has their own unique approach to gardening and harvesting,” said Kuch. €œThere are so buy generic aldactone online many things being grown. Cabbage, corn, potatoes, broccoli, tomatoes, and buy generic aldactone online beautiful sunflowers.

You wouldn’t believe the variety and the willingness to share what is harvested with other gardeners, members of the community and patients.”Picard is pleased to see elderly residents becoming involved. €œMany don’t have buy generic aldactone online the room to plant where they live,” she explained. €œThis place gives them a chance to be outside, grow their own food, socialize with others and get some exercise. It’s inspiring to see their work pay off in so many ways.”Those who are interested in securing a plot must fill out an application and waiver, and agree to the terms set by Produce by the buy generic aldactone online Park. All skill levels are welcome and there is no cost associated with securing a plot.“Our goal has evolved,” said Palmer.

€œWe hope to build upon this buy generic aldactone online year’s successes to increase food security by providing access to fresh, healthy foods while reinforcing ties to the environment and encouraging community members to work together. I think we are well on our way.”Those interested in more information on the Produce by the Park or to request an application may visit www.midmichigan.org/bay/garden or contact Palmer at (989) 778-2888 or ashleigh.palmer@midmichigan.org..

What may interact with Aldactone?

Do not take Aldactone with the following:

  • eplerenone

Aldactone may also interact with the following medications:

  • corticosteroids
  • digoxin
  • lithium
  • medicines for high blood pressure like ACE inhibitors
  • skeletal muscle relaxants like tubocurarine
  • NSAIDs, medicines for pain and inflammation, like ibuprofen or naproxen
  • potassium products like salt substitute or supplements
  • pressor amines like norepinephrine
  • some diuretics

This list may not describe all possible interactions. Give your health care provider a list of all the medicines, herbs, non-prescription drugs, or dietary supplements you use. Also tell them if you smoke, drink alcohol, or use illegal drugs. Some items may interact with your medicine.

Generic name for aldactone

Covid-19 has created a crisis throughout the https://www.voiture-et-handicap.fr/buy-generic-aldactone-online/ world generic name for aldactone. This crisis has produced a test of leadership. With no good options to combat a novel pathogen, countries were generic name for aldactone forced to make hard choices about how to respond. Here in the United States, our leaders have failed that test.

They have taken a crisis and turned it into generic name for aldactone a tragedy.The magnitude of this failure is astonishing. According to the Johns Hopkins Center for Systems Science and Engineering,1 the United States leads the world in Covid-19 cases and in deaths due to the disease, far exceeding the numbers in much larger countries, such as China. The death rate in this country is more than double that of generic name for aldactone Canada, exceeds that of Japan, a country with a vulnerable and elderly population, by a factor of almost 50, and even dwarfs the rates in lower-middle-income countries, such as Vietnam, by a factor of almost 2000. Covid-19 is an overwhelming challenge, and many factors contribute to its severity.

But the generic name for aldactone one we can control is how we behave. And in the United States we have consistently behaved poorly.We know that we could have done better. China, faced with the first outbreak, chose strict quarantine and isolation after an generic name for aldactone initial delay. These measures were severe but effective, essentially eliminating transmission at the point where the outbreak began and reducing the death rate to a reported 3 per million, as compared with more than 500 per million in the United States.

Countries that had far more exchange with China, such as Singapore and South Korea, began intensive testing early, along with aggressive contact tracing and appropriate isolation, and have had relatively small outbreaks. And New Zealand has used these same measures, together with its geographic advantages, to come close to eliminating the disease, something that has allowed that country to limit the time of closure and to generic name for aldactone largely reopen society to a prepandemic level. In general, not only have many democracies done better than the United States, but they have also outperformed us by orders of magnitude.Why has the United States handled this pandemic so badly?. We have failed at generic name for aldactone almost every step.

We had ample warning, but when the disease first arrived, we were incapable of testing effectively and couldn’t provide even the most basic personal protective equipment to health care workers and the general public. And we continue to be way behind the generic name for aldactone curve in testing. While the absolute numbers of tests have increased substantially, the more useful metric is the number of tests performed per infected person, a rate that puts us far down the international list, below such places as Kazakhstan, Zimbabwe, and Ethiopia, countries that cannot boast the biomedical infrastructure or the manufacturing capacity that we have.2 Moreover, a lack of emphasis on developing capacity has meant that U.S. Test results are often long delayed, rendering the results useless for disease control.Although we tend to focus on technology, most of the interventions that have large effects generic name for aldactone are not complicated.

The United States instituted quarantine and isolation measures late and inconsistently, often without any effort to enforce them, after the disease had spread substantially in many communities. Our rules on social distancing have in many places been lackadaisical at best, with loosening of restrictions generic name for aldactone long before adequate disease control had been achieved. And in much of the country, people simply don’t wear masks, largely because our leaders have stated outright that masks are political tools rather than effective infection control measures. The government has appropriately invested heavily in vaccine development, but its rhetoric has politicized the development process and led to growing public distrust.The United States came into this crisis with enormous advantages.

Along with tremendous manufacturing capacity, we have a biomedical research system that is the envy of generic name for aldactone the world. We have enormous expertise in public health, health policy, and basic biology and have consistently been able to turn that expertise into new therapies and preventive measures. And much of that national expertise generic name for aldactone resides in government institutions. Yet our leaders have largely chosen to ignore and even denigrate experts.The response of our nation’s leaders has been consistently inadequate.

The federal government has largely abandoned disease generic name for aldactone control to the states. Governors have varied in their responses, not so much by party as by competence. But whatever generic name for aldactone their competence, governors do not have the tools that Washington controls. Instead of using those tools, the federal government has undermined them.

The Centers for Disease Control and Prevention, which was the world’s leading disease response organization, generic name for aldactone has been eviscerated and has suffered dramatic testing and policy failures. The National Institutes of Health have played a key role in vaccine development but have been excluded from much crucial government decision making. And the Food and Drug Administration has been shamefully politicized,3 appearing to respond to pressure from the administration rather than scientific evidence. Our current leaders have undercut trust generic name for aldactone in science and in government,4 causing damage that will certainly outlast them.

Instead of relying on expertise, the administration has turned to uninformed “opinion leaders” and charlatans who obscure the truth and facilitate the promulgation of outright lies.Let’s be clear about the cost of not taking even simple measures. An outbreak that has disproportionately affected communities generic name for aldactone of color has exacerbated the tensions associated with inequality. Many of our children are missing school at critical times in their social and intellectual development. The hard generic name for aldactone work of health care professionals, who have put their lives on the line, has not been used wisely.

Our current leadership takes pride in the economy, but while most of the world has opened up to some extent, the United States still suffers from disease rates that have prevented many businesses from reopening, with a resultant loss of hundreds of billions of dollars and millions of jobs. And more than 200,000 Americans have generic name for aldactone died. Some deaths from Covid-19 were unavoidable. But, although it is impossible to project the precise number of additional American lives lost because of weak and inappropriate government policies, it is at least generic name for aldactone in the tens of thousands in a pandemic that has already killed more Americans than any conflict since World War II.Anyone else who recklessly squandered lives and money in this way would be suffering legal consequences.

Our leaders have largely claimed immunity for their actions. But this election gives us the power to render judgment. Reasonable people generic name for aldactone will certainly disagree about the many political positions taken by candidates. But truth is neither liberal nor conservative.

When it comes to the response to the largest public health crisis of our time, our current political leaders have demonstrated that they generic name for aldactone are dangerously incompetent. We should not abet them and enable the deaths of thousands more Americans by allowing them to keep their jobs.Patients Figure 1. Figure 1 generic name for aldactone. Enrollment and Randomization.

Of the 1114 patients who were assessed for eligibility, 1062 generic name for aldactone underwent randomization. 541 were assigned to the remdesivir group and 521 to the placebo group (intention-to-treat population) (Figure 1). 159 (15.0%) were categorized as having mild-to-moderate disease, and generic name for aldactone 903 (85.0%) were in the severe disease stratum. Of those assigned to receive remdesivir, 531 patients (98.2%) received the treatment as assigned.

Fifty-two patients had remdesivir treatment discontinued before day 10 because of an adverse event or a serious adverse event other than death and 10 withdrew consent. Of those generic name for aldactone assigned to receive placebo, 517 patients (99.2%) received placebo as assigned. Seventy patients discontinued placebo before day 10 because of an adverse event or a serious adverse event other than death and 14 withdrew consent. A total of 517 generic name for aldactone patients in the remdesivir group and 508 in the placebo group completed the trial through day 29, recovered, or died.

Fourteen patients who received remdesivir and 9 who received placebo terminated their participation in the trial before day 29. A total of 54 of the patients who were in the mild-to-moderate stratum at randomization were subsequently determined to meet the criteria for severe disease, resulting in 105 patients in the mild-to-moderate disease stratum and 957 in the generic name for aldactone severe stratum. The as-treated population included 1048 patients who received the assigned treatment (532 in the remdesivir group, including one patient who had been randomly assigned to placebo and received remdesivir, and 516 in the placebo group). Table 1 generic name for aldactone.

Table 1. Demographic and Clinical Characteristics of the Patients generic name for aldactone at Baseline. The mean age of the patients was 58.9 years, and 64.4% were male (Table 1). On the basis of the evolving epidemiology of Covid-19 during the trial, 79.8% of patients were enrolled at sites in North America, 15.3% in Europe, and 4.9% in Asia (Table S1 in the Supplementary Appendix).

Overall, 53.3% of the patients were generic name for aldactone White, 21.3% were Black, 12.7% were Asian, and 12.7% were designated as other or not reported. 250 (23.5%) were Hispanic or Latino. Most patients had either one (25.9%) or two or more (54.5%) of the prespecified coexisting generic name for aldactone conditions at enrollment, most commonly hypertension (50.2%), obesity (44.8%), and type 2 diabetes mellitus (30.3%). The median number of days between symptom onset and randomization was 9 (interquartile range, 6 to 12) (Table S2).

A total of 957 generic name for aldactone patients (90.1%) had severe disease at enrollment. 285 patients (26.8%) met category 7 criteria on the ordinal scale, 193 (18.2%) category 6, 435 (41.0%) category 5, and 138 (13.0%) category 4. Eleven patients (1.0%) had missing ordinal scale generic name for aldactone data at enrollment. All these patients discontinued the study before treatment.

During the study, 373 patients (35.6% generic name for aldactone of the 1048 patients in the as-treated population) received hydroxychloroquine and 241 (23.0%) received a glucocorticoid (Table S3). Primary Outcome Figure 2. Figure 2. Kaplan–Meier Estimates of generic name for aldactone Cumulative Recoveries.

Cumulative recovery estimates are shown in the overall population (Panel A), in patients with a baseline score of 4 on the ordinal scale (not receiving oxygen. Panel B), in those with a baseline score of generic name for aldactone 5 (receiving oxygen. Panel C), in those with a baseline score of 6 (receiving high-flow oxygen or noninvasive mechanical ventilation. Panel D), and in those with a baseline score of 7 (receiving mechanical ventilation or extracorporeal generic name for aldactone membrane oxygenation [ECMO].

Panel E).Table 2. Table 2 generic name for aldactone. Outcomes Overall and According to Score on the Ordinal Scale in the Intention-to-Treat Population. Figure 3 generic name for aldactone.

Figure 3. Time to Recovery According to Subgroup. The widths generic name for aldactone of the confidence intervals have not been adjusted for multiplicity and therefore cannot be used to infer treatment effects. Race and ethnic group were reported by the patients.Patients in the remdesivir group had a shorter time to recovery than patients in the placebo group (median, 10 days, as compared with 15 days.

Rate ratio for generic name for aldactone recovery, 1.29. 95% confidence interval [CI], 1.12 to 1.49. P<0.001) (Figure 2 and Table 2) generic name for aldactone. In the severe disease stratum (957 patients) the median time to recovery was 11 days, as compared with 18 days (rate ratio for recovery, 1.31.

95% CI, generic name for aldactone 1.12 to 1.52) (Table S4). The rate ratio for recovery was largest among patients with a baseline ordinal score of 5 (rate ratio for recovery, 1.45. 95% CI, 1.18 to generic name for aldactone 1.79). Among patients with a baseline score of 4 and those with a baseline score of 6, the rate ratio estimates for recovery were 1.29 (95% CI, 0.91 to 1.83) and 1.09 (95% CI, 0.76 to 1.57), respectively.

For those receiving mechanical ventilation or ECMO at enrollment (baseline ordinal score of 7), the rate ratio for recovery was 0.98 (95% CI, 0.70 to 1.36). Information on interactions of treatment with baseline ordinal score as a continuous variable is provided in Table S11 generic name for aldactone. An analysis adjusting for baseline ordinal score as a covariate was conducted to evaluate the overall effect (of the percentage of patients in each ordinal score category at baseline) on the primary outcome. This adjusted generic name for aldactone analysis produced a similar treatment-effect estimate (rate ratio for recovery, 1.26.

95% CI, 1.09 to 1.46). Patients who underwent randomization during the first 10 days after the onset of symptoms had a rate ratio for recovery of 1.37 (95% CI, 1.14 to 1.64), whereas patients generic name for aldactone who underwent randomization more than 10 days after the onset of symptoms had a rate ratio for recovery of 1.20 (95% CI, 0.94 to 1.52) (Figure 3). The benefit of remdesivir was larger when given earlier in the illness, though the benefit persisted in most analyses of duration of symptoms (Table S6). Sensitivity analyses generic name for aldactone in which data were censored at earliest reported use of glucocorticoids or hydroxychloroquine still showed efficacy of remdesivir (9.0 days to recovery with remdesivir vs.

14.0 days to recovery with placebo. Rate ratio, 1.28 generic name for aldactone. 95% CI, 1.09 to 1.50, and 10.0 vs. 16.0 days to recovery.

Rate ratio, generic name for aldactone 1.32. 95% CI, 1.11 to 1.58, respectively) (Table S8). Key Secondary Outcome The odds of improvement in the ordinal scale score were higher in the remdesivir group, as determined by a proportional generic name for aldactone odds model at the day 15 visit, than in the placebo group (odds ratio for improvement, 1.5. 95% CI, 1.2 to 1.9, adjusted for disease severity) (Table 2 and Fig.

S7). Mortality Kaplan–Meier estimates of mortality by day 15 were 6.7% in the remdesivir group and 11.9% in the placebo group (hazard ratio, 0.55. 95% CI, 0.36 to 0.83). The estimates by day 29 were 11.4% and 15.2% in two groups, respectively (hazard ratio, 0.73.

95% CI, 0.52 to 1.03). The between-group differences in mortality varied considerably according to baseline severity (Table 2), with the largest difference seen among patients with a baseline ordinal score of 5 (hazard ratio, 0.30. 95% CI, 0.14 to 0.64). Information on interactions of treatment with baseline ordinal score with respect to mortality is provided in Table S11.

Additional Secondary Outcomes Table 3. Table 3. Additional Secondary Outcomes. Patients in the remdesivir group had a shorter time to improvement of one or of two categories on the ordinal scale from baseline than patients in the placebo group (one-category improvement.

Median, 7 vs. 9 days. Rate ratio for recovery, 1.23. 95% CI, 1.08 to 1.41.

Two-category improvement. Median, 11 vs. 14 days. Rate ratio, 1.29.

95% CI, 1.12 to 1.48) (Table 3). Patients in the remdesivir group had a shorter time to discharge or to a National Early Warning Score of 2 or lower than those in the placebo group (median, 8 days vs. 12 days. Hazard ratio, 1.27.

95% CI, 1.10 to 1.46). The initial length of hospital stay was shorter in the remdesivir group than in the placebo group (median, 12 days vs. 17 days). 5% of patients in the remdesivir group were readmitted to the hospital, as compared with 3% in the placebo group.

Among the 913 patients receiving oxygen at enrollment, those in the remdesivir group continued to receive oxygen for fewer days than patients in the placebo group (median, 13 days vs. 21 days), and the incidence of new oxygen use among patients who were not receiving oxygen at enrollment was lower in the remdesivir group than in the placebo group (incidence, 36% [95% CI, 26 to 47] vs. 44% [95% CI, 33 to 57]). For the 193 patients receiving noninvasive ventilation or high-flow oxygen at enrollment, the median duration of use of these interventions was 6 days in both the remdesivir and placebo groups.

Among the 573 patients who were not receiving noninvasive ventilation, high-flow oxygen, invasive ventilation, or ECMO at baseline, the incidence of new noninvasive ventilation or high-flow oxygen use was lower in the remdesivir group than in the placebo group (17% [95% CI, 13 to 22] vs. 24% [95% CI, 19 to 30]). Among the 285 patients who were receiving mechanical ventilation or ECMO at enrollment, patients in the remdesivir group received these interventions for fewer subsequent days than those in the placebo group (median, 17 days vs. 20 days), and the incidence of new mechanical ventilation or ECMO use among the 766 patients who were not receiving these interventions at enrollment was lower in the remdesivir group than in the placebo group (13% [95% CI, 10 to 17] vs.

23% [95% CI, 19 to 27]) (Table 3). Safety Outcomes In the as-treated population, serious adverse events occurred in 131 of 532 patients (24.6%) in the remdesivir group and in 163 of 516 patients (31.6%) in the placebo group (Table S17). There were 47 serious respiratory failure adverse events in the remdesivir group (8.8% of patients), including acute respiratory failure and the need for endotracheal intubation, and 80 in the placebo group (15.5% of patients) (Table S19). No deaths were considered by the investigators to be related to treatment assignment.

Grade 3 or 4 adverse events occurred on or before day 29 in 273 patients (51.3%) in the remdesivir group and in 295 (57.2%) in the placebo group (Table S18). 41 events were judged by the investigators to be related to remdesivir and 47 events to placebo (Table S17). The most common nonserious adverse events occurring in at least 5% of all patients included decreased glomerular filtration rate, decreased hemoglobin level, decreased lymphocyte count, respiratory failure, anemia, pyrexia, hyperglycemia, increased blood creatinine level, and increased blood glucose level (Table S20). The incidence of these adverse events was generally similar in the remdesivir and placebo groups.

Crossover After the data and safety monitoring board recommended that the preliminary primary analysis report be provided to the sponsor, data on a total of 51 patients (4.8% of the total study enrollment) — 16 (3.0%) in the remdesivir group and 35 (6.7%) in the placebo group — were unblinded. 26 (74.3%) of those in the placebo group whose data were unblinded were given remdesivir. Sensitivity analyses evaluating the unblinding (patients whose treatment assignments were unblinded had their data censored at the time of unblinding) and crossover (patients in the placebo group treated with remdesivir had their data censored at the initiation of remdesivir treatment) produced results similar to those of the primary analysis (Table S9).Trial Design and Oversight The RECOVERY trial is an investigator-initiated platform trial to evaluate the effects of potential treatments in patients hospitalized with Covid-19. The trial is being conducted at 176 hospitals in the United Kingdom.

(Details are provided in the Supplementary Appendix, available with the full text of this article at NEJM.org.) The investigators were assisted by the National Institute for Health Research Clinical Research Network, and the trial is coordinated by the Nuffield Department of Population Health at the University of Oxford, the trial sponsor. Although patients are no longer being enrolled in the hydroxychloroquine, dexamethasone, and lopinavir–ritonavir groups, the trial continues to study the effects of azithromycin, tocilizumab, convalescent plasma, and REGN-COV2 (a combination of two monoclonal antibodies directed against the SARS-CoV-2 spike protein). Other treatments may be studied in the future. The hydroxychloroquine that was used in this phase of the trial was supplied by the U.K.

National Health Service (NHS). Hospitalized patients were eligible for the trial if they had clinically-suspected or laboratory-confirmed SARS-CoV-2 infection and no medical history that might, in the opinion of the attending clinician, put patients at substantial risk if they were to participate in the trial. Initially, recruitment was limited to patients who were at least 18 years of age, but the age limit was removed as of May 9, 2020. Written informed consent was obtained from all the patients or from a legal representative if they were too unwell or unable to provide consent.

The trial was conducted in accordance with Good Clinical Practice guidelines of the International Conference on Harmonisation and was approved by the U.K. Medicines and Healthcare Products Regulatory Agency (MHRA) and the Cambridge East Research Ethics Committee. The protocol with its statistical analysis plan are available at NEJM.org, with additional information in the Supplementary Appendix and on the trial website at www.recoverytrial.net. The initial version of the manuscript was drafted by the first and last authors, developed by the writing committee, and approved by all members of the trial steering committee.

The funders had no role in the analysis of the data, in the preparation or approval of the manuscript, or in the decision to submit the manuscript for publication. The first and last members of the writing committee vouch for the completeness and accuracy of the data and for the fidelity of the trial to the protocol and statistical analysis plan. Randomization and Treatment We collected baseline data using a Web-based case-report form that included demographic data, level of respiratory support, major coexisting illnesses, the suitability of the trial treatment for a particular patient, and treatment availability at the trial site. Using a Web-based unstratified randomization method with the concealment of trial group, we assigned patients to receive either the usual standard of care or the usual standard of care plus hydroxychloroquine or one of the other available treatments that were being evaluated.

The number of patients who were assigned to receive usual care was twice the number who were assigned to any of the active treatments for which the patient was eligible (e.g., 2:1 ratio in favor of usual care if the patient was eligible for only one active treatment group, 2:1:1 if the patient was eligible for two active treatments, etc.). For some patients, hydroxychloroquine was unavailable at the hospital at the time of enrollment or was considered by the managing physician to be either definitely indicated or definitely contraindicated. Patients with a known prolonged corrected QT interval on electrocardiography were ineligible to receive hydroxychloroquine. (Coadministration with medications that prolong the QT interval was not an absolute contraindication, but attending clinicians were advised to check the QT interval by performing electrocardiography.) These patients were excluded from entry in the randomized comparison between hydroxychloroquine and usual care.

In the hydroxychloroquine group, patients received hydroxychloroquine sulfate (in the form of a 200-mg tablet containing a 155-mg base equivalent) in a loading dose of four tablets (total dose, 800 mg) at baseline and at 6 hours, which was followed by two tablets (total dose, 400 mg) starting at 12 hours after the initial dose and then every 12 hours for the next 9 days or until discharge, whichever occurred earlier (see the Supplementary Appendix).15 The assigned treatment was prescribed by the attending clinician. The patients and local trial staff members were aware of the assigned trial groups. Procedures A single online follow-up form was to be completed by the local trial staff members when each trial patient was discharged, at 28 days after randomization, or at the time of death, whichever occurred first. Information was recorded regarding the adherence to the assigned treatment, receipt of other treatments for Covid-19, duration of admission, receipt of respiratory support (with duration and type), receipt of renal dialysis or hemofiltration, and vital status (including cause of death).

Starting on May 12, 2020, extra information was recorded on the occurrence of new major cardiac arrhythmia. In addition, we obtained routine health care and registry data that included information on vital status (with date and cause of death) and discharge from the hospital. Outcome Measures The primary outcome was all-cause mortality within 28 days after randomization. Further analyses were specified at 6 months.

Secondary outcomes were the time until discharge from the hospital and a composite of the initiation of invasive mechanical ventilation including extracorporeal membrane oxygenation or death among patients who were not receiving invasive mechanical ventilation at the time of randomization. Decisions to initiate invasive mechanical ventilation were made by the attending clinicians, who were informed by guidance from NHS England and the National Institute for Health and Care Excellence. Subsidiary clinical outcomes included cause-specific mortality (which was recorded in all patients) and major cardiac arrhythmia (which was recorded in a subgroup of patients). All information presented in this report is based on a data cutoff of September 21, 2020.

Information regarding the primary outcome is complete for all the trial patients. Statistical Analysis For the primary outcome of 28-day mortality, we used the log-rank observed-minus-expected statistic and its variance both to test the null hypothesis of equal survival curves and to calculate the one-step estimate of the average mortality rate ratio in the comparison between the hydroxychloroquine group and the usual-care group. Kaplan–Meier survival curves were constructed to show cumulative mortality over the 28-day period. The same methods were used to analyze the time until hospital discharge, with censoring of data on day 29 for patients who had died in the hospital.

We used the Kaplan–Meier estimates to calculate the median time until hospital discharge. For the prespecified composite secondary outcome of invasive mechanical ventilation or death within 28 days (among patients who had not been receiving invasive mechanical ventilation at randomization), the precise date of the initiation of invasive mechanical ventilation was not available, so the risk ratio was estimated instead. Estimates of the between-group difference in absolute risk were also calculated. All the analyses were performed according to the intention-to-treat principle.

Prespecified analyses of the primary outcome were performed in six subgroups, as defined by characteristics at randomization. Age, sex, race, level of respiratory support, days since symptom onset, and predicted 28-day risk of death. (Details are provided in the Supplementary Appendix.) Estimates of rate and risk ratios are shown with 95% confidence intervals without adjustment for multiple testing. The P value for the assessment of the primary outcome is two-sided.

The full database is held by the trial team, which collected the data from the trial sites and performed the analyses, at the Nuffield Department of Population Health at the University of Oxford. The independent data monitoring committee was asked to review unblinded analyses of the trial data and any other information that was considered to be relevant at intervals of approximately 2 weeks. The committee was then charged with determining whether the randomized comparisons in the trial provided evidence with respect to mortality that was strong enough (with a range of uncertainty around the results that was narrow enough) to affect national and global treatment strategies. In such a circumstance, the committee would inform the members of the trial steering committee, who would make the results available to the public and amend the trial accordingly.

Unless that happened, the steering committee, investigators, and all others involved in the trial would remain unaware of the interim results until 28 days after the last patient had been randomly assigned to a particular treatment group. On June 4, 2020, in response to a request from the MHRA, the independent data monitoring committee conducted a review of the data and recommended that the chief investigators review the unblinded data for the hydroxychloroquine group. The chief investigators and steering committee members concluded that the data showed no beneficial effect of hydroxychloroquine in patients hospitalized with Covid-19. Therefore, the enrollment of patients in the hydroxychloroquine group was closed on June 5, 2020, and the preliminary result for the primary outcome was made public.

Investigators were advised that any patients who were receiving hydroxychloroquine as part of the trial should discontinue the treatment.Trial Design and Oversight The RECOVERY trial was designed to evaluate the effects of potential treatments in patients hospitalized with Covid-19 at 176 National Health Service organizations in the United Kingdom and was supported by the National Institute for Health Research Clinical Research Network. (Details regarding this trial are provided in the Supplementary Appendix, available with the full text of this article at NEJM.org.) The trial is being coordinated by the Nuffield Department of Population Health at the University of Oxford, the trial sponsor. Although the randomization of patients to receive dexamethasone, hydroxychloroquine, or lopinavir–ritonavir has now been stopped, the trial continues randomization to groups receiving azithromycin, tocilizumab, or convalescent plasma. Hospitalized patients were eligible for the trial if they had clinically suspected or laboratory-confirmed SARS-CoV-2 infection and no medical history that might, in the opinion of the attending clinician, put patients at substantial risk if they were to participate in the trial.

Initially, recruitment was limited to patients who were at least 18 years of age, but the age limit was removed starting on May 9, 2020. Pregnant or breast-feeding women were eligible. Written informed consent was obtained from all the patients or from a legal representative if they were unable to provide consent. The trial was conducted in accordance with the principles of the Good Clinical Practice guidelines of the International Conference on Harmonisation and was approved by the U.K.

Medicines and Healthcare Products Regulatory Agency and the Cambridge East Research Ethics Committee. The protocol with its statistical analysis plan is available at NEJM.org and on the trial website at www.recoverytrial.net. The initial version of the manuscript was drafted by the first and last authors, developed by the writing committee, and approved by all members of the trial steering committee. The funders had no role in the analysis of the data, in the preparation or approval of the manuscript, or in the decision to submit the manuscript for publication.

The first and last members of the writing committee vouch for the completeness and accuracy of the data and for the fidelity of the trial to the protocol and statistical analysis plan. Randomization We collected baseline data using a Web-based case-report form that included demographic data, the level of respiratory support, major coexisting illnesses, suitability of the trial treatment for a particular patient, and treatment availability at the trial site. Randomization was performed with the use of a Web-based system with concealment of the trial-group assignment. Eligible and consenting patients were assigned in a 2:1 ratio to receive either the usual standard of care alone or the usual standard of care plus oral or intravenous dexamethasone (at a dose of 6 mg once daily) for up to 10 days (or until hospital discharge if sooner) or to receive one of the other suitable and available treatments that were being evaluated in the trial.

For some patients, dexamethasone was unavailable at the hospital at the time of enrollment or was considered by the managing physician to be either definitely indicated or definitely contraindicated. These patients were excluded from entry in the randomized comparison between dexamethasone and usual care and hence were not included in this report. The randomly assigned treatment was prescribed by the treating clinician. Patients and local members of the trial staff were aware of the assigned treatments.

Procedures A single online follow-up form was to be completed when the patients were discharged or had died or at 28 days after randomization, whichever occurred first. Information was recorded regarding the patients’ adherence to the assigned treatment, receipt of other trial treatments, duration of admission, receipt of respiratory support (with duration and type), receipt of renal support, and vital status (including the cause of death). In addition, we obtained routine health care and registry data, including information on vital status (with date and cause of death), discharge from the hospital, and respiratory and renal support therapy. Outcome Measures The primary outcome was all-cause mortality within 28 days after randomization.

Further analyses were specified at 6 months. Secondary outcomes were the time until discharge from the hospital and, among patients not receiving invasive mechanical ventilation at the time of randomization, subsequent receipt of invasive mechanical ventilation (including extracorporeal membrane oxygenation) or death. Other prespecified clinical outcomes included cause-specific mortality, receipt of renal hemodialysis or hemofiltration, major cardiac arrhythmia (recorded in a subgroup), and receipt and duration of ventilation. Statistical Analysis As stated in the protocol, appropriate sample sizes could not be estimated when the trial was being planned at the start of the Covid-19 pandemic.

As the trial progressed, the trial steering committee, whose members were unaware of the results of the trial comparisons, determined that if 28-day mortality was 20%, then the enrollment of at least 2000 patients in the dexamethasone group and 4000 in the usual care group would provide a power of at least 90% at a two-sided P value of 0.01 to detect a clinically relevant proportional reduction of 20% (an absolute difference of 4 percentage points) between the two groups. Consequently, on June 8, 2020, the steering committee closed recruitment to the dexamethasone group, since enrollment had exceeded 2000 patients. For the primary outcome of 28-day mortality, the hazard ratio from Cox regression was used to estimate the mortality rate ratio. Among the few patients (0.1%) who had not been followed for 28 days by the time of the data cutoff on July 6, 2020, data were censored either on that date or on day 29 if the patient had already been discharged.

That is, in the absence of any information to the contrary, these patients were assumed to have survived for 28 days. Kaplan–Meier survival curves were constructed to show cumulative mortality over the 28-day period. Cox regression was used to analyze the secondary outcome of hospital discharge within 28 days, with censoring of data on day 29 for patients who had died during hospitalization. For the prespecified composite secondary outcome of invasive mechanical ventilation or death within 28 days (among patients who were not receiving invasive mechanical ventilation at randomization), the precise date of invasive mechanical ventilation was not available, so a log-binomial regression model was used to estimate the risk ratio.

Table 1. Table 1. Characteristics of the Patients at Baseline, According to Treatment Assignment and Level of Respiratory Support. Through the play of chance in the unstratified randomization, the mean age was 1.1 years older among patients in the dexamethasone group than among those in the usual care group (Table 1).

To account for this imbalance in an important prognostic factor, estimates of rate ratios were adjusted for the baseline age in three categories (<70 years, 70 to 79 years, and ≥80 years). This adjustment was not specified in the first version of the statistical analysis plan but was added once the imbalance in age became apparent. Results without age adjustment (corresponding to the first version of the analysis plan) are provided in the Supplementary Appendix. Prespecified analyses of the primary outcome were performed in five subgroups, as defined by characteristics at randomization.

Age, sex, level of respiratory support, days since symptom onset, and predicted 28-day mortality risk. (One further prespecified subgroup analysis regarding race will be conducted once the data collection has been completed.) In prespecified subgroups, we estimated rate ratios (or risk ratios in some analyses) and their confidence intervals using regression models that included an interaction term between the treatment assignment and the subgroup of interest. Chi-square tests for linear trend across the subgroup-specific log estimates were then performed in accordance with the prespecified plan. All P values are two-sided and are shown without adjustment for multiple testing.

All analyses were performed according to the intention-to-treat principle. The full database is held by the trial team, which collected the data from trial sites and performed the analyses at the Nuffield Department of Population Health, University of Oxford..

Covid-19 has created a crisis throughout the buy generic aldactone online world. This crisis has produced a test of leadership. With no good buy generic aldactone online options to combat a novel pathogen, countries were forced to make hard choices about how to respond.

Here in the United States, our leaders have failed that test. They have taken a crisis and turned it into a tragedy.The magnitude of this failure buy generic aldactone online is astonishing. According to the Johns Hopkins Center for Systems Science and Engineering,1 the United States leads the world in Covid-19 cases and in deaths due to the disease, far exceeding the numbers in much larger countries, such as China.

The death rate in this country is more than double that of Canada, exceeds that of Japan, a buy generic aldactone online country with a vulnerable and elderly population, by a factor of almost 50, and even dwarfs the rates in lower-middle-income countries, such as Vietnam, by a factor of almost 2000. Covid-19 is an overwhelming challenge, and many factors contribute to its severity. But the one we can control is buy generic aldactone online how we behave.

And in the United States we have consistently behaved poorly.We know that we could have done better. China, faced with the first outbreak, chose strict quarantine and isolation buy generic aldactone online after an initial delay. These measures were severe but effective, essentially eliminating transmission at the point where the outbreak began and reducing the death rate to a reported 3 per million, as compared with more than 500 per million in the United States.

Countries that had far more exchange with China, such as Singapore and South Korea, began intensive testing early, along with aggressive contact tracing and appropriate isolation, and have had relatively small outbreaks. And New Zealand has used these same measures, together with its geographic advantages, to come close to eliminating the disease, something that has allowed that country to limit the time of closure and to largely reopen society to buy generic aldactone online a prepandemic level. In general, not only have many democracies done better than the United States, but they have also outperformed us by orders of magnitude.Why has the United States handled this pandemic so badly?.

We buy generic aldactone online have failed at almost every step. We had ample warning, but when the disease first arrived, we were incapable of testing effectively and couldn’t provide even the most basic personal protective equipment to health care workers and the general public. And we continue to be way behind the curve in testing buy generic aldactone online.

While the absolute numbers of tests have increased substantially, the more useful metric is the number of tests performed per infected person, a rate that puts us far down the international list, below such places as Kazakhstan, Zimbabwe, and Ethiopia, countries that cannot boast the biomedical infrastructure or the manufacturing capacity that we have.2 Moreover, a lack of emphasis on developing capacity has meant that U.S. Test results are often long delayed, rendering the results useless for disease control.Although we tend to focus on technology, most of the interventions that buy generic aldactone online have large effects are not complicated. The United States instituted quarantine and isolation measures late and inconsistently, often without any effort to enforce them, after the disease had spread substantially in many communities.

Our rules on social distancing buy generic aldactone online have in many places been lackadaisical at best, with loosening of restrictions long before adequate disease control had been achieved. And in much of the country, people simply don’t wear masks, largely because our leaders have stated outright that masks are political tools rather than effective infection control measures. The government has appropriately invested heavily in vaccine development, but its rhetoric has politicized the development process and led to growing public distrust.The United States came into this crisis with enormous advantages.

Along with tremendous manufacturing capacity, we have a biomedical research system that is the envy buy generic aldactone online of the world. We have enormous expertise in public health, health policy, and basic biology and have consistently been able to turn that expertise into new therapies and preventive measures. And much buy generic aldactone online of that national expertise resides in government institutions.

Yet our leaders have largely chosen to ignore and even denigrate experts.The response of our nation’s leaders has been consistently inadequate. The federal government has largely abandoned disease control to the states buy generic aldactone online. Governors have varied in their responses, not so much by party as by competence.

But whatever buy generic aldactone online their competence, governors do not have the tools that Washington controls. Instead of using those tools, the federal government has undermined them. The Centers for Disease Control buy generic aldactone online and Prevention, which was the world’s leading disease response organization, has been eviscerated and has suffered dramatic testing and policy failures.

The National Institutes of Health have played a key role in vaccine development but have been excluded from much crucial government decision making. And the Food and Drug Administration has been shamefully politicized,3 appearing to respond to pressure from the administration rather than scientific evidence. Our current leaders have undercut trust in science and in government,4 causing damage buy generic aldactone online that will certainly outlast them.

Instead of relying on expertise, the administration has turned to uninformed “opinion leaders” and charlatans who obscure the truth and facilitate the promulgation of outright lies.Let’s be clear about the cost of not taking even simple measures. An outbreak that has disproportionately affected communities of color has exacerbated buy generic aldactone online the tensions associated with inequality. Many of our children are missing school at critical times in their social and intellectual development.

The hard buy generic aldactone online work of health care professionals, who have put their lives on the line, has not been used wisely. Our current leadership takes pride in the economy, but while most of the world has opened up to some extent, the United States still suffers from disease rates that have prevented many businesses from reopening, with a resultant loss of hundreds of billions of dollars and millions of jobs. And more buy generic aldactone online than 200,000 Americans have died.

Some deaths from Covid-19 were unavoidable. But, although it is impossible to project the precise number of additional American lives lost because of buy generic aldactone online weak and inappropriate government policies, it is at least in the tens of thousands in a pandemic that has already killed more Americans than any conflict since World War II.Anyone else who recklessly squandered lives and money in this way would be suffering legal consequences. Our leaders have largely claimed immunity for their actions.

But this election gives us the power to render judgment. Reasonable people will buy generic aldactone online certainly disagree about the many political positions taken by candidates. But truth is neither liberal nor conservative.

When it comes to the response to the largest public health crisis of our time, our buy generic aldactone online current political leaders have demonstrated that they are dangerously incompetent. We should not abet them and enable the deaths of thousands more Americans by allowing them to keep their jobs.Patients Figure 1. Figure 1 buy generic aldactone online.

Enrollment and Randomization. Of the 1114 patients who were assessed for eligibility, 1062 underwent randomization buy generic aldactone online. 541 were assigned to the remdesivir group and 521 to the placebo group (intention-to-treat population) (Figure 1).

159 (15.0%) were buy generic aldactone online categorized as having mild-to-moderate disease, and 903 (85.0%) were in the severe disease stratum. Of those assigned to receive remdesivir, 531 patients (98.2%) received the treatment as assigned. Fifty-two patients had remdesivir treatment discontinued before day 10 because of an adverse event or a serious adverse event other than death and 10 withdrew consent.

Of those assigned to receive placebo, 517 patients (99.2%) received buy generic aldactone online placebo as assigned. Seventy patients discontinued placebo before day 10 because of an adverse event or a serious adverse event other than death and 14 withdrew consent. A total of 517 patients in the remdesivir group and 508 in the buy generic aldactone online placebo group completed the trial through day 29, recovered, or died.

Fourteen patients who received remdesivir and 9 who received placebo terminated their participation in the trial before day 29. A total of 54 of the patients who were buy generic aldactone online in the mild-to-moderate stratum at randomization were subsequently determined to meet the criteria for severe disease, resulting in 105 patients in the mild-to-moderate disease stratum and 957 in the severe stratum. The as-treated population included 1048 patients who received the assigned treatment (532 in the remdesivir group, including one patient who had been randomly assigned to placebo and received remdesivir, and 516 in the placebo group).

Table 1 buy generic aldactone online. Table 1. Demographic and Clinical Characteristics of buy generic aldactone online the Patients at Baseline.

The mean age of the patients was 58.9 years, and 64.4% were male (Table 1). On the basis of the evolving epidemiology of Covid-19 during the trial, 79.8% of patients were enrolled at sites in North America, 15.3% in Europe, and 4.9% in Asia (Table S1 in the Supplementary Appendix). Overall, 53.3% of the patients were White, 21.3% were Black, 12.7% were Asian, and 12.7% were designated as other or buy generic aldactone online not reported.

250 (23.5%) were Hispanic or Latino. Most patients had either one (25.9%) or two or more (54.5%) buy generic aldactone online of the prespecified coexisting conditions at enrollment, most commonly hypertension (50.2%), obesity (44.8%), and type 2 diabetes mellitus (30.3%). The median number of days between symptom onset and randomization was 9 (interquartile range, 6 to 12) (Table S2).

A total of 957 patients (90.1%) had severe disease at enrollment buy generic aldactone online. 285 patients (26.8%) met category 7 criteria on the ordinal scale, 193 (18.2%) category 6, 435 (41.0%) category 5, and 138 (13.0%) category 4. Eleven patients (1.0%) had missing ordinal scale data buy generic aldactone online at enrollment.

All these patients discontinued the study before treatment. During the study, 373 patients (35.6% of the 1048 patients in the as-treated population) buy generic aldactone online received hydroxychloroquine and 241 (23.0%) received a glucocorticoid (Table S3). Primary Outcome Figure 2.

Figure 2. Kaplan–Meier Estimates of buy generic aldactone online Cumulative Recoveries. Cumulative recovery estimates are shown in the overall population (Panel A), in patients with a baseline score of 4 on the ordinal scale (not receiving oxygen.

Panel B), in those with a baseline score of 5 (receiving oxygen buy generic aldactone online. Panel C), in those with a baseline score of 6 (receiving high-flow oxygen or noninvasive mechanical ventilation. Panel D), and in those with a baseline score of 7 (receiving mechanical ventilation or buy generic aldactone online extracorporeal membrane oxygenation [ECMO].

Panel E).Table 2. Table 2 buy generic aldactone online. Outcomes Overall and According to Score on the Ordinal Scale in the Intention-to-Treat Population.

Figure 3 buy generic aldactone online. Figure 3. Time to Recovery According to Subgroup.

The widths of the confidence intervals have not buy generic aldactone online been adjusted for multiplicity and therefore cannot be used to infer treatment effects. Race and ethnic group were reported by the patients.Patients in the remdesivir group had a shorter time to recovery than patients in the placebo group (median, 10 days, as compared with 15 days. Rate ratio for recovery, buy generic aldactone online 1.29.

95% confidence interval [CI], 1.12 to 1.49. P<0.001) (Figure buy generic aldactone online 2 and Table 2). In the severe disease stratum (957 patients) the median time to recovery was 11 days, as compared with 18 days (rate ratio for recovery, 1.31.

95% CI, buy generic aldactone online 1.12 to 1.52) (Table S4). The rate ratio for recovery was largest among patients with a baseline ordinal score of 5 (rate ratio for recovery, 1.45. 95% CI, 1.18 to buy generic aldactone online 1.79).

Among patients with a baseline score of 4 and those with a baseline score of 6, the rate ratio estimates for recovery were 1.29 (95% CI, 0.91 to 1.83) and 1.09 (95% CI, 0.76 to 1.57), respectively. For those receiving mechanical ventilation or ECMO at enrollment (baseline ordinal score of 7), the rate ratio for recovery was 0.98 (95% CI, 0.70 to 1.36). Information on interactions of treatment with baseline buy generic aldactone online ordinal score as a continuous variable is provided in Table S11.

An analysis adjusting for baseline ordinal score as a covariate was conducted to evaluate the overall effect (of the percentage of patients in each ordinal score category at baseline) on the primary outcome. This adjusted analysis produced a similar treatment-effect estimate (rate ratio buy generic aldactone online for recovery, 1.26. 95% CI, 1.09 to 1.46).

Patients who underwent randomization during the first 10 days after the onset of symptoms had a rate ratio for recovery of 1.37 (95% CI, 1.14 to 1.64), whereas patients who underwent randomization more than 10 days after the onset of symptoms had buy generic aldactone online a rate ratio for recovery of 1.20 (95% CI, 0.94 to 1.52) (Figure 3). The benefit of remdesivir was larger when given earlier in the illness, though the benefit persisted in most analyses of duration of symptoms (Table S6). Sensitivity analyses in buy generic aldactone online which data were censored at earliest reported use of glucocorticoids or hydroxychloroquine still showed efficacy of remdesivir (9.0 days to recovery with remdesivir vs.

14.0 days to recovery with placebo. Rate ratio, buy generic aldactone online 1.28. 95% CI, 1.09 to 1.50, and 10.0 vs.

16.0 days to recovery. Rate ratio, 1.32 buy generic aldactone online. 95% CI, 1.11 to 1.58, respectively) (Table S8).

Key Secondary Outcome The odds of improvement in the ordinal scale score were higher in the remdesivir group, as determined by a proportional odds model at buy generic aldactone online the day 15 visit, than in the placebo group (odds ratio for improvement, 1.5. 95% CI, 1.2 to 1.9, adjusted for disease severity) (Table 2 and Fig. S7).

Mortality Kaplan–Meier estimates of mortality by day 15 were 6.7% in the remdesivir group and 11.9% in the placebo group (hazard ratio, 0.55. 95% CI, 0.36 to 0.83). The estimates by day 29 were 11.4% and 15.2% in two groups, respectively (hazard ratio, 0.73.

95% CI, 0.52 to 1.03). The between-group differences in mortality varied considerably according to baseline severity (Table 2), with the largest difference seen among patients with a baseline ordinal score of 5 (hazard ratio, 0.30. 95% CI, 0.14 to 0.64).

Information on interactions of treatment with baseline ordinal score with respect to mortality is provided in Table S11. Additional Secondary Outcomes Table 3. Table 3.

Additional Secondary Outcomes. Patients in the remdesivir group had a shorter time to improvement of one or of two categories on the ordinal scale from baseline than patients in the placebo group (one-category improvement. Median, 7 vs.

9 days. Rate ratio for recovery, 1.23. 95% CI, 1.08 to 1.41.

Two-category improvement. Median, 11 vs. 14 days.

Rate ratio, 1.29. 95% CI, 1.12 to 1.48) (Table 3). Patients in the remdesivir group had a shorter time to discharge or to a National Early Warning Score of 2 or lower than those in the placebo group (median, 8 days vs.

12 days. Hazard ratio, 1.27. 95% CI, 1.10 to 1.46).

The initial length of hospital stay was shorter in the remdesivir group than in the placebo group (median, 12 days vs. 17 days). 5% of patients in the remdesivir group were readmitted to the hospital, as compared with 3% in the placebo group.

Among the 913 patients receiving oxygen at enrollment, those in the remdesivir group continued to receive oxygen for fewer days than patients in the placebo group (median, 13 days vs. 21 days), and the incidence of new oxygen use among patients who were not receiving oxygen at enrollment was lower in the remdesivir group than in the placebo group (incidence, 36% [95% CI, 26 to 47] vs. 44% [95% CI, 33 to 57]).

For the 193 patients receiving noninvasive ventilation or high-flow oxygen at enrollment, the median duration of use of these interventions was 6 days in both the remdesivir and placebo groups. Among the 573 patients who were not receiving noninvasive ventilation, high-flow oxygen, invasive ventilation, or ECMO at baseline, the incidence of new noninvasive ventilation or high-flow oxygen use was lower in the remdesivir group than in the placebo group (17% [95% CI, 13 to 22] vs. 24% [95% CI, 19 to 30]).

Among the 285 patients who were receiving mechanical ventilation or ECMO at enrollment, patients in the remdesivir group received these interventions for fewer subsequent days than those in the placebo group (median, 17 days vs. 20 days), and the incidence of new mechanical ventilation or ECMO use among the 766 patients who were not receiving these interventions at enrollment was lower in the remdesivir group than in the placebo group (13% [95% CI, 10 to 17] vs. 23% [95% CI, 19 to 27]) (Table 3).

Safety Outcomes In the as-treated population, serious adverse events occurred in 131 of 532 patients (24.6%) in the remdesivir group and in 163 of 516 patients (31.6%) in the placebo group (Table S17). There were 47 serious respiratory failure adverse events in the remdesivir group (8.8% of patients), including acute respiratory failure and the need for endotracheal intubation, and 80 in the placebo group (15.5% of patients) (Table S19). No deaths were considered by the investigators to be related to treatment assignment.

Grade 3 or 4 adverse events occurred on or before day 29 in 273 patients (51.3%) in the remdesivir group and in 295 (57.2%) in the placebo group (Table S18). 41 events were judged by the investigators to be related to remdesivir and 47 events to placebo (Table S17). The most common nonserious adverse events occurring in at least 5% of all patients included decreased glomerular filtration rate, decreased hemoglobin level, decreased lymphocyte count, respiratory failure, anemia, pyrexia, hyperglycemia, increased blood creatinine level, and increased blood glucose level (Table S20).

The incidence of these adverse events was generally similar in the remdesivir and placebo groups. Crossover After the data and safety monitoring board recommended that the preliminary primary analysis report be provided to the sponsor, data on a total of 51 patients (4.8% of the total study enrollment) — 16 (3.0%) in the remdesivir group and 35 (6.7%) in the placebo group — were unblinded. 26 (74.3%) of those in the placebo group whose data were unblinded were given remdesivir.

Sensitivity analyses evaluating the unblinding (patients whose treatment assignments were unblinded had their data censored at the time of unblinding) and crossover (patients in the placebo group treated with remdesivir had their data censored at the initiation of remdesivir treatment) produced results similar to those of the primary analysis (Table S9).Trial Design and Oversight The RECOVERY trial is an investigator-initiated platform trial to evaluate the effects of potential treatments in patients hospitalized with Covid-19. The trial is being conducted at 176 hospitals in the United Kingdom. (Details are provided in the Supplementary Appendix, available with the full text of this article at NEJM.org.) The investigators were assisted by the National Institute for Health Research Clinical Research Network, and the trial is coordinated by the Nuffield Department of Population Health at the University of Oxford, the trial sponsor.

Although patients are no longer being enrolled in the hydroxychloroquine, dexamethasone, and lopinavir–ritonavir groups, the trial continues to study the effects of azithromycin, tocilizumab, convalescent plasma, and REGN-COV2 (a combination of two monoclonal antibodies directed against the SARS-CoV-2 spike protein). Other treatments may be studied in the future. The hydroxychloroquine that was used in this phase of the trial was supplied by the U.K.

National Health Service (NHS). Hospitalized patients were eligible for the trial if they had clinically-suspected or laboratory-confirmed SARS-CoV-2 infection and no medical history that might, in the opinion of the attending clinician, put patients at substantial risk if they were to participate in the trial. Initially, recruitment was limited to patients who were at least 18 years of age, but the age limit was removed as of May 9, 2020.

Written informed consent was obtained from all the patients or from a legal representative if they were too unwell or unable to provide consent. The trial was conducted in accordance with Good Clinical Practice guidelines of the International Conference on Harmonisation and was approved by the U.K. Medicines and Healthcare Products Regulatory Agency (MHRA) and the Cambridge East Research Ethics Committee.

The protocol with its statistical analysis plan are available at NEJM.org, with additional information in the Supplementary Appendix and on the trial website at www.recoverytrial.net. The initial version of the manuscript was drafted by the first and last authors, developed by the writing committee, and approved by all members of the trial steering committee. The funders had no role in the analysis of the data, in the preparation or approval of the manuscript, or in the decision to submit the manuscript for publication.

The first and last members of the writing committee vouch for the completeness and accuracy of the data and for the fidelity of the trial to the protocol and statistical analysis plan. Randomization and Treatment We collected baseline data using a Web-based case-report form that included demographic data, level of respiratory support, major coexisting illnesses, the suitability of the trial treatment for a particular patient, and treatment availability at the trial site. Using a Web-based unstratified randomization method with the concealment of trial group, we assigned patients to receive either the usual standard of care or the usual standard of care plus hydroxychloroquine or one of the other available treatments that were being evaluated.

The number of patients who were assigned to receive usual care was twice the number who were assigned to any of the active treatments for which the patient was eligible (e.g., 2:1 ratio in favor of usual care if the patient was eligible for only one active treatment group, 2:1:1 if the patient was eligible for two active treatments, etc.). For some patients, hydroxychloroquine was unavailable at the hospital at the time of enrollment or was considered by the managing physician to be either definitely indicated or definitely contraindicated. Patients with a known prolonged corrected QT interval on electrocardiography were ineligible to receive hydroxychloroquine.

(Coadministration with medications that prolong the QT interval was not an absolute contraindication, but attending clinicians were advised to check the QT interval by performing electrocardiography.) These patients were excluded from entry in the randomized comparison between hydroxychloroquine and usual care. In the hydroxychloroquine group, patients received hydroxychloroquine sulfate (in the form of a 200-mg tablet containing a 155-mg base equivalent) in a loading dose of four tablets (total dose, 800 mg) at baseline and at 6 hours, which was followed by two tablets (total dose, 400 mg) starting at 12 hours after the initial dose and then every 12 hours for the next 9 days or until discharge, whichever occurred earlier (see the Supplementary Appendix).15 The assigned treatment was prescribed by the attending clinician. The patients and local trial staff members were aware of the assigned trial groups.

Procedures A single online follow-up form was to be completed by the local trial staff members when each trial patient was discharged, at 28 days after randomization, or at the time of death, whichever occurred first. Information was recorded regarding the adherence to the assigned treatment, receipt of other treatments for Covid-19, duration of admission, receipt of respiratory support (with duration and type), receipt of renal dialysis or hemofiltration, and vital status (including cause of death). Starting on May 12, 2020, extra information was recorded on the occurrence of new major cardiac arrhythmia.

In addition, we obtained routine health care and registry data that included information on vital status (with date and cause of death) and discharge from the hospital. Outcome Measures The primary outcome was all-cause mortality within 28 days after randomization. Further analyses were specified at 6 months.

Secondary outcomes were the time until discharge from the hospital and a composite of the initiation of invasive mechanical ventilation including extracorporeal membrane oxygenation or death among patients who were not receiving invasive mechanical ventilation at the time of randomization. Decisions to initiate invasive mechanical ventilation were made by the attending clinicians, who were informed by guidance from NHS England and the National Institute for Health and Care Excellence. Subsidiary clinical outcomes included cause-specific mortality (which was recorded in all patients) and major cardiac arrhythmia (which was recorded in a subgroup of patients).

All information presented in this report is based on a data cutoff of September 21, 2020. Information regarding the primary outcome is complete for all the trial patients. Statistical Analysis For the primary outcome of 28-day mortality, we used the log-rank observed-minus-expected statistic and its variance both to test the null hypothesis of equal survival curves and to calculate the one-step estimate of the average mortality rate ratio in the comparison between the hydroxychloroquine group and the usual-care group.

Kaplan–Meier survival curves were constructed to show cumulative mortality over the 28-day period. The same methods were used to analyze the time until hospital discharge, with censoring of data on day 29 for patients who had died in the hospital. We used the Kaplan–Meier estimates to calculate the median time until hospital discharge.

For the prespecified composite secondary outcome of invasive mechanical ventilation or death within 28 days (among patients who had not been receiving invasive mechanical ventilation at randomization), the precise date of the initiation of invasive mechanical ventilation was not available, so the risk ratio was estimated instead. Estimates of the between-group difference in absolute risk were also calculated. All the analyses were performed according to the intention-to-treat principle.

Prespecified analyses of the primary outcome were performed in six subgroups, as defined by characteristics at randomization. Age, sex, race, level of respiratory support, days since symptom onset, and predicted 28-day risk of death. (Details are provided in the Supplementary Appendix.) Estimates of rate and risk ratios are shown with 95% confidence intervals without adjustment for multiple testing.

The P value for the assessment of the primary outcome is two-sided. The full database is held by the trial team, which collected the data from the trial sites and performed the analyses, at the Nuffield Department of Population Health at the University of Oxford. The independent data monitoring committee was asked to review unblinded analyses of the trial data and any other information that was considered to be relevant at intervals of approximately 2 weeks.

The committee was then charged with determining whether the randomized comparisons in the trial provided evidence with respect to mortality that was strong enough (with a range of uncertainty around the results that was narrow enough) to affect national and global treatment strategies. In such a circumstance, the committee would inform the members of the trial steering committee, who would make the results available to the public and amend the trial accordingly. Unless that happened, the steering committee, investigators, and all others involved in the trial would remain unaware of the interim results until 28 days after the last patient had been randomly assigned to a particular treatment group.

On June 4, 2020, in response to a request from the MHRA, the independent data monitoring committee conducted a review of the data and recommended that the chief investigators review the unblinded data for the hydroxychloroquine group. The chief investigators and steering committee members concluded that the data showed no beneficial effect of hydroxychloroquine in patients hospitalized with Covid-19. Therefore, the enrollment of patients in the hydroxychloroquine group was closed on June 5, 2020, and the preliminary result for the primary outcome was made public.

Investigators were advised that any patients who were receiving hydroxychloroquine as part of the trial should discontinue the treatment.Trial Design and Oversight The RECOVERY trial was designed to evaluate the effects of potential treatments in patients hospitalized with Covid-19 at 176 National Health Service organizations in the United Kingdom and was supported by the National Institute for Health Research Clinical Research Network. (Details regarding this trial are provided in the Supplementary Appendix, available with the full text of this article at NEJM.org.) The trial is being coordinated by the Nuffield Department of Population Health at the University of Oxford, the trial sponsor. Although the randomization of patients to receive dexamethasone, hydroxychloroquine, or lopinavir–ritonavir has now been stopped, the trial continues randomization to groups receiving azithromycin, tocilizumab, or convalescent plasma.

Hospitalized patients were eligible for the trial if they had clinically suspected or laboratory-confirmed SARS-CoV-2 infection and no medical history that might, in the opinion of the attending clinician, put patients at substantial risk if they were to participate in the trial. Initially, recruitment was limited to patients who were at least 18 years of age, but the age limit was removed starting on May 9, 2020. Pregnant or breast-feeding women were eligible.

Written informed consent was obtained from all the patients or from a legal representative if they were unable to provide consent. The trial was conducted in accordance with the principles of the Good Clinical Practice guidelines of the International Conference on Harmonisation and was approved by the U.K. Medicines and Healthcare Products Regulatory Agency and the Cambridge East Research Ethics Committee.

The protocol with its statistical analysis plan is available at NEJM.org and on the trial website at www.recoverytrial.net. The initial version of the manuscript was drafted by the first and last authors, developed by the writing committee, and approved by all members of the trial steering committee. The funders had no role in the analysis of the data, in the preparation or approval of the manuscript, or in the decision to submit the manuscript for publication.

The first and last members of the writing committee vouch for the completeness and accuracy of the data and for the fidelity of the trial to the protocol and statistical analysis plan. Randomization We collected baseline data using a Web-based case-report form that included demographic data, the level of respiratory support, major coexisting illnesses, suitability of the trial treatment for a particular patient, and treatment availability at the trial site. Randomization was performed with the use of a Web-based system with concealment of the trial-group assignment.

Eligible and consenting patients were assigned in a 2:1 ratio to receive either the usual standard of care alone or the usual standard of care plus oral or intravenous dexamethasone (at a dose of 6 mg once daily) for up to 10 days (or until hospital discharge if sooner) or to receive one of the other suitable and available treatments that were being evaluated in the trial. For some patients, dexamethasone was unavailable at the hospital at the time of enrollment or was considered by the managing physician to be either definitely indicated or definitely contraindicated. These patients were excluded from entry in the randomized comparison between dexamethasone and usual care and hence were not included in this report.

The randomly assigned treatment was prescribed by the treating clinician. Patients and local members of the trial staff were aware of the assigned treatments. Procedures A single online follow-up form was to be completed when the patients were discharged or had died or at 28 days after randomization, whichever occurred first.

Information was recorded regarding the patients’ adherence to the assigned treatment, receipt of other trial treatments, duration of admission, receipt of respiratory support (with duration and type), receipt of renal support, and vital status (including the cause of death). In addition, we obtained routine health care and registry data, including information on vital status (with date and cause of death), discharge from the hospital, and respiratory and renal support therapy. Outcome Measures The primary outcome was all-cause mortality within 28 days after randomization.

Further analyses were specified at 6 months. Secondary outcomes were the time until discharge from the hospital and, among patients not receiving invasive mechanical ventilation at the time of randomization, subsequent receipt of invasive mechanical ventilation (including extracorporeal membrane oxygenation) or death. Other prespecified clinical outcomes included cause-specific mortality, receipt of renal hemodialysis or hemofiltration, major cardiac arrhythmia (recorded in a subgroup), and receipt and duration of ventilation.

Statistical Analysis As stated in the protocol, appropriate sample sizes could not be estimated when the trial was being planned at the start of the Covid-19 pandemic. As the trial progressed, the trial steering committee, whose members were unaware of the results of the trial comparisons, determined that if 28-day mortality was 20%, then the enrollment of at least 2000 patients in the dexamethasone group and 4000 in the usual care group would provide a power of at least 90% at a two-sided P value of 0.01 to detect a clinically relevant proportional reduction of 20% (an absolute difference of 4 percentage points) between the two groups. Consequently, on June 8, 2020, the steering committee closed recruitment to the dexamethasone group, since enrollment had exceeded 2000 patients.

For the primary outcome of 28-day mortality, the hazard ratio from Cox regression was used to estimate the mortality rate ratio. Among the few patients (0.1%) who had not been followed for 28 days by the time of the data cutoff on July 6, 2020, data were censored either on that date or on day 29 if the patient had already been discharged. That is, in the absence of any information to the contrary, these patients were assumed to have survived for 28 days.

Kaplan–Meier survival curves were constructed to show cumulative mortality over the 28-day period. Cox regression was used to analyze the secondary outcome of hospital discharge within 28 days, with censoring of data on day 29 for patients who had died during hospitalization. For the prespecified composite secondary outcome of invasive mechanical ventilation or death within 28 days (among patients who were not receiving invasive mechanical ventilation at randomization), the precise date of invasive mechanical ventilation was not available, so a log-binomial regression model was used to estimate the risk ratio.

Table 1. Table 1. Characteristics of the Patients at Baseline, According to Treatment Assignment and Level of Respiratory Support.

Through the play of chance in the unstratified randomization, the mean age was 1.1 years older among patients in the dexamethasone group than among those in the usual care group (Table 1). To account for this imbalance in an important prognostic factor, estimates of rate ratios were adjusted for the baseline age in three categories (<70 years, 70 to 79 years, and ≥80 years). This adjustment was not specified in the first version of the statistical analysis plan but was added once the imbalance in age became apparent.

Results without age adjustment (corresponding to the first version of the analysis plan) are provided in the Supplementary Appendix. Prespecified analyses of the primary outcome were performed in five subgroups, as defined by characteristics at randomization. Age, sex, level of respiratory support, days since symptom onset, and predicted 28-day mortality risk.

(One further prespecified subgroup analysis regarding race will be conducted once the data collection has been completed.) In prespecified subgroups, we estimated rate ratios (or risk ratios in some analyses) and their confidence intervals using regression models that included an interaction term between the treatment assignment and the subgroup of interest. Chi-square tests for linear trend across the subgroup-specific log estimates were then performed in accordance with the prespecified plan. All P values are two-sided and are shown without adjustment for multiple testing.

All analyses were performed according to the intention-to-treat principle. The full database is held by the trial team, which collected the data from trial sites and performed the analyses at the Nuffield Department of Population Health, University of Oxford..

Aldactone drug

How to cite this aldactone drug aldactone 25 mg for weight loss article:Singh O P. Aftermath of celebrity suicide – Media coverage and role of psychiatrists. Indian J aldactone drug Psychiatry 2020;62:337-8Celebrity suicide is one of the highly publicized events in our country. Indians got a glimpse of this following an unfortunate incident where a popular Hindi film actor died of suicide. As expected, the media went into a frenzy as newspapers, news channels, and social media were full of stories providing minute details of the suicidal aldactone drug act.

Some even going as far as highlighting the color of the cloth used in the suicide as well as showing the lifeless body of the actor. All kinds of personal details were dug up, and speculations and hypotheses became the order of the day in the next few days that followed. In the process, reputations of many people associated with the actor were besmirched and their private and personal details were freely and blatantly broadcast and discussed on electronic, aldactone drug print, and social media. We understand that media houses have their own need and duty to report and sensationalize news for increasing their visibility (aka TRP), but such reporting has huge impacts on the mental health of the vulnerable population.The impact of this was soon realized when many incidents of copycat suicide were reported from all over the country within a few days of the incident. Psychiatrists suddenly started getting distress calls from their patients in despair with increased suicidal ideation aldactone drug.

This has become a major area of concern for the psychiatry community.The Indian Psychiatric Society has been consistently trying to engage with media to promote ethical reporting of suicide. Section 24 (1) of Mental Health Care Act, 2017, forbids publication of photograph of mentally ill person without aldactone drug his consent.[1] The Press Council of India has adopted the guidelines of World Health Organization report on Preventing Suicide. A resource for media professionals, which came out with an advisory to be followed by media in reporting cases of suicide. It includes points forbidding them from putting stories in prominent positions and unduly repeating them, explicitly describing the method used, providing details about the site/location, using sensational headlines, or using photographs and video footage of the incident.[2] Unfortunately, the advisory seems to have little effect in the aftermath of celebrity suicides. Channels were full of speculations about the person's mental condition and illness and also his aldactone drug relationships and finances.

Many fictional accounts of his symptoms and illness were touted, which is not only against the ethics but is also contrary to MHCA, 2017.[1]It went to the extent that the name of his psychiatrist was mentioned and quotes were attributed to him without taking any account from him. The Indian Psychiatric Society has written to the Press Council of India underlining this concern and asking for measures to ensure ethics aldactone drug in reporting suicide.While there is a need for engagement with media to make them aware of the grave impact of negative suicide reporting on the lives of many vulnerable persons, there is even a more urgent need for training of psychiatrists regarding the proper way of interaction with media. This has been amply brought out in the aftermath of this incident. Many psychiatrists and mental health professionals were called by media houses aldactone drug to comment on the episode. Many psychiatrists were quoted, or “misquoted,” or “quoted out of context,” commenting on the life of a person whom they had never examined and had no “professional authority” to do so.

There were even stories with byline of a psychiatrist where the content provided was not only unscientific but also way beyond the expertise of a psychiatrist. These types of viewpoints perpetuate stigma, myths, and “misleading concepts” about psychiatry and are detrimental to the image of psychiatry in addition to doing harm and injustice to aldactone drug our patients. Hence, the need to formulate a guideline for interaction of psychiatrists with the media is imperative.In the infamous Goldwater episode, 12,356 psychiatrists were asked to cast opinion about the fitness of Barry Goldwater for presidential candidature. Out of 2417 respondents, 1189 psychiatrists reported him to be mentally unfit while none had actually examined him.[3] This led to the formulation of “The Goldwater Rule” by the American Psychiatric Association in 1973,[4] but we have witnessed aldactone drug the same phenomenon at the time of presidential candidature of Donald Trump.Psychiatrists should be encouraged to interact with media to provide scientific information about mental illnesses and reduction of stigma, but “statements to the media” can be a double-edged sword, and we should know about the rules of engagements and boundaries of interactions. Methods and principles of interaction with media should form a part of our training curriculum.

Many professional societies aldactone drug have guidelines and resource books for interacting with media, and psychiatrists should familiarize themselves with these documents. The Press Council guideline is likely to prompt reporters to seek psychiatrists for their expert opinion. It is useful for them to have a template ready with suicide rates, emphasizing multicausality of suicide, role of mental disorders, as well as help available.[5]It is about time that the Indian Psychiatric Society formulated its own guidelines laying down the broad principles and boundaries governing the interaction of Indian psychiatrists with the media. Till then, it is desirable to be guided by the following broad principles:It should be assumed that no statement goes “off the record” as the media person is most likely recording the interview, and we should also record any such conversation from our endIt should be clarified in which capacity comments are being made – professional, personal, or as a representative of an organizationOne should not comment on any person whom he has not examinedPsychiatrists should take any such opportunity to educate the public about mental health issuesThe comments should be justified aldactone drug and limited by the boundaries of scientific knowledge available at the moment. References Correspondence Address:Dr.

O P SinghAA 304, Ashabari Apartments, O/31, Baishnabghata, Patuli Township, Kolkata - 700 094, West Bengal IndiaSource aldactone drug of Support. None, Conflict of Interest. NoneDOI. 10.4103/psychiatry.IndianJPsychiatry_816_20Abstract Electroconvulsive therapy (ECT) is an effective modality of treatment for a variety of psychiatric disorders. However, it has always been accused of being a coercive, unethical, and dangerous modality of treatment.

The dangerousness of ECT has been mainly attributed to its claimed ability to cause brain damage. This narrative review aims to provide an update of the evidence with regard to whether the practice of ECT is associated with damage to the brain. An accepted definition of brain damage remains elusive. There are also ethical and technical problems in designing studies that look at this question specifically. Thus, even though there are newer technological tools and innovations, any review attempting to answer this question would have to take recourse to indirect methods.

These include structural, functional, and metabolic neuroimaging. Body fluid biochemical marker studies. And follow-up studies of cognitive impairment and incidence of dementia in people who have received ECT among others. The review of literature and present evidence suggests that ECT has a demonstrable impact on the structure and function of the brain. However, there is a lack of evidence at present to suggest that ECT causes brain damage.Keywords.

Adverse effect, brain damage, electroconvulsive therapyHow to cite this article:Jolly AJ, Singh SM. Does electroconvulsive therapy cause brain damage. An update. Indian J Psychiatry 2020;62:339-53 Introduction Electroconvulsive therapy (ECT) as a modality of treatment for psychiatric disorders has existed at least since 1938.[1] ECT is an effective modality of treatment for various psychiatric disorders. However, from the very beginning, the practice of ECT has also faced resistance from various groups who claim that it is coercive and harmful.[2] While the ethical aspects of the practice of ECT have been dealt with elsewhere, the question of harmfulness or brain damage consequent upon the passage of electric current needs to be examined afresh in light of technological advances and new knowledge.[3]The question whether ECT causes brain damage was reviewed in a holistic fashion by Devanand et al.

In the mid-1990s.[4],[5] The authors had attempted to answer this question by reviewing the effect of ECT on the brain in various areas – cognitive side effects, structural neuroimaging studies, neuropathologic studies of patients who had received ECT, autopsy studies of epileptic patients, and finally animal ECS studies. The authors had concluded that ECT does not produce brain damage.This narrative review aims to update the evidence with regard to whether ECT causes brain damage by reviewing relevant literature from 1994 to the present time. Framing the Question The Oxford Dictionary defines damage as physical harm that impairs the value, usefulness, or normal function of something.[6] Among medical dictionaries, the Peter Collins Dictionary defines damage as harm done to things (noun) or to harm something (verb).[7] Brain damage is defined by the British Medical Association Medical Dictionary as degeneration or death of nerve cells and tracts within the brain that may be localized to a particular area of the brain or diffuse.[8] Going by such a definition, brain damage in the context of ECT should refer to death or degeneration of brain tissue, which results in the impairment of functioning of the brain. The importance of precisely defining brain damage shall become evident subsequently in this review.There are now many more tools available to investigate the structure and function of brain in health and illness. However, there are obvious ethical issues in designing human studies that are designed to answer this specific question.

Therefore, one must necessarily take recourse to indirect evidences available through studies that have been designed to answer other research questions. These studies have employed the following methods:Structural neuroimaging studiesFunctional neuroimaging studiesMetabolic neuroimaging studiesBody fluid biochemical marker studiesCognitive impairment studies.While the early studies tended to focus more on establishing the safety of ECT and finding out whether ECT causes gross microscopic brain damage, the later studies especially since the advent of advanced neuroimaging techniques have been focusing more on a mechanistic understanding of ECT. Hence, the primary objective of the later neuroimaging studies has been to look for structural and functional brain changes which might explain how ECT acts rather than evidence of gross structural damage per se. However, put together, all these studies would enable us to answer our titular question to some satisfaction. [Table 1] and [Table 2] provide an overview of the evidence base in this area.

Structural and Functional Neuroimaging Studies Devanand et al. Reviewed 16 structural neuroimaging studies on the effect of ECT on the brain.[4] Of these, two were pneumoencephalography studies, nine were computed tomography (CT) scan studies, and five were magnetic resonance imaging (MRI) studies. However, most of these studies were retrospective in design, with neuroimaging being done in patients who had received ECT in the past. In the absence of baseline neuroimaging, it would be very difficult to attribute any structural brain changes to ECT. In addition, pneumoencephalography, CT scan, and even early 0.3 T MRI provided images with much lower spatial resolution than what is available today.

The authors concluded that there was no evidence to show that ECT caused any structural damage to the brain.[4] Since then, at least twenty more MRI-based structural neuroimaging studies have studied the effect of ECT on the brain. The earliest MRI studies in the early 1990s focused on detecting structural damage following ECT. All of these studies were prospective in design, with the first MRI scan done at baseline and a second MRI scan performed post ECT.[9],[11],[12],[13],[41] While most of the studies imaged the patient once around 24 h after receiving ECT, some studies performed multiple post ECT neuroimaging in the first 24 h after ECT to better capture the acute changes. A single study by Coffey et al. Followed up the patients for a duration of 6 months and repeated neuroimaging again at 6 months in order to capture any long-term changes following ECT.[10]The most important conclusion which emerged from this early series of studies was that there was no evidence of cortical atrophy, change in ventricle size, or increase in white matter hyperintensities.[4] The next major conclusion was that there appeared to be an increase in the T1 and T2 relaxation time immediately following ECT, which returned to normal within 24 h.

This supported the theory that immediately following ECT, there appears to be a temporary breakdown of the blood–brain barrier, leading to water influx into the brain tissue.[11] The last significant observation by Coffey et al. In 1991 was that there was no significant temporal changes in the total volumes of the frontal lobes, temporal lobes, or amygdala–hippocampal complex.[10] This was, however, something which would later be refuted by high-resolution MRI studies. Nonetheless, one inescapable conclusion of these early studies was that there was no evidence of any gross structural brain changes following administration of ECT. Much later in 2007, Szabo et al. Used diffusion-weighted MRI to image patients in the immediate post ECT period and failed to observe any obvious brain tissue changes following ECT.[17]The next major breakthrough came in 2010 when Nordanskog et al.

Demonstrated that there was a significant increase in the volume of the hippocampus bilaterally following a course of ECT in a cohort of patients with depressive illness.[18] This contradicted the earlier observations by Coffey et al. That there was no volume increase in any part of the brain following ECT.[10] This was quite an exciting finding and was followed by several similar studies. However, the perspective of these studies was quite different from the early studies. In contrast to the early studies looking for the evidence of ECT-related brain damage, the newer studies were focused more on elucidating the mechanism of action of ECT. Further on in 2014, Nordanskog et al.

In a follow-up study showed that though there was a significant increase in the volume of the hippocampus 1 week after a course of ECT, the hippocampal volume returned to the baseline after 6 months.[19] Two other studies in 2013 showed that in addition to the hippocampus, the amygdala also showed significant volume increase following ECT.[20],[21] A series of structural neuroimaging studies after that have expanded on these findings and as of now, gray matter volume increase following ECT has been demonstrated in the hippocampus, amygdala, anterior temporal pole, subgenual cortex,[21] right caudate nucleus, and the whole of the medial temporal lobe (MTL) consisting of the hippocampus, amygdala, insula, and the posterosuperior temporal cortex,[24] para hippocampi, right subgenual anterior cingulate gyrus, and right anterior cingulate gyrus,[25] left cerebellar area VIIa crus I,[29] putamen, caudate nucleus, and nucleus acumbens [31] and clusters of increased cortical thickness involving the temporal pole, middle and superior temporal cortex, insula, and inferior temporal cortex.[27] However, the most consistently reported and replicated finding has been the bilateral increase in the volume of the hippocampus and amygdala. In light of these findings, it has been tentatively suggested that ECT acts by inducing neuronal regeneration in the hippocampus – amygdala complex.[42],[43] However, there are certain inconsistencies to this hypothesis. Till date, only one study – Nordanskog et al., 2014 – has followed study patients for a long term – 6 months in their case. And significantly, the authors found out that after increasing immediately following ECT, the hippocampal volume returns back to baseline by 6 months.[19] This, however, was not associated with the relapse of depressive symptoms. Another area of significant confusion has been the correlation of hippocampal volume increase with improvement of depressive symptoms.

Though almost all studies demonstrate a significant increase in hippocampal volume following ECT, a majority of studies failed to demonstrate a correlation between symptom improvement and hippocampal volume increase.[19],[20],[22],[24],[28] However, a significant minority of volumetric studies have demonstrated correlation between increase in hippocampal and/or amygdala volume and improvement of symptoms.[21],[25],[30]Another set of studies have used diffusion tensor imaging, functional MRI (fMRI), anatomical connectome, and structural network analysis to study the effect of ECT on the brain. The first of these studies by Abbott et al. In 2014 demonstrated that on fMRI, the connectivity between right and left hippocampus was significantly reduced in patients with severe depression. It was also shown that the connectivity was normalized following ECT, and symptom improvement was correlated with an increase in connectivity.[22] In a first of its kind DTI study, Lyden et al. In 2014 demonstrated that fractional anisotropy which is a measure of white matter tract or fiber density is increased post ECT in patients with severe depression in the anterior cingulum, forceps minor, and the dorsal aspect of the left superior longitudinal fasciculus.

The authors suggested that ECT acts to normalize major depressive disorder-related abnormalities in the structural connectivity of the dorsal fronto-limbic pathways.[23] Another DTI study in 2015 constructed large-scale anatomical networks of the human brain – connectomes, based on white matter fiber tractography. The authors found significant reorganization in the anatomical connections involving the limbic structure, temporal lobe, and frontal lobe. It was also found that connection changes between amygdala and para hippocampus correlated with reduction in depressive symptoms.[26] In 2016, Wolf et al. Used a source-based morphometry approach to study the structural networks in patients with depression and schizophrenia and the effect of ECT on the same. It was found that the medial prefrontal cortex/anterior cingulate cortex (ACC/MPFC) network, MTL network, bilateral thalamus, and left cerebellar regions/precuneus exhibited significant difference between healthy controls and the patient population.

It was also demonstrated that administration of ECT leads to significant increase in the network strength of the ACC/MPFC network and the MTL network though the increase in network strength and symptom amelioration were not correlated.[32]Building on these studies, a recently published meta-analysis has attempted a quantitative synthesis of brain volume changes – focusing on hippocampal volume increase following ECT in patients with major depressive disorder and bipolar disorder. The authors initially selected 32 original articles from which six articles met the criteria for quantitative synthesis. The results showed significant increase in the volume of the right and left hippocampus following ECT. For the rest of the brain regions, the heterogeneity in protocols and imaging techniques did not permit a quantitative analysis, and the authors have resorted to a narrative review similar to the present one with similar conclusions.[44] Focusing exclusively on hippocampal volume change in ECT, Oltedal et al. In 2018 conducted a mega-analysis of 281 patients with major depressive disorder treated with ECT enrolled at ten different global sites of the Global ECT-MRI Research Collaboration.[45] Similar to previous studies, there was a significant increase in hippocampal volume bilaterally with a dose–response relationship with the number of ECTs administered.

Furthermore, bilateral (B/L) ECT was associated with an equal increase in volume in both right and left hippocampus, whereas right unilateral ECT was associated with greater volume increase in the right hippocampus. Finally, contrary to expectation, clinical improvement was found to be negatively correlated with hippocampal volume.Thus, a review of the current evidence amply demonstrates that from looking for ECT-related brain damage – and finding none, we have now moved ahead to looking for a mechanistic understanding of the effect of ECT. In this regard, it has been found that ECT does induce structural changes in the brain – a fact which has been seized upon by some to claim that ECT causes brain damage.[46] Such statements should, however, be weighed against the definition of damage as understood by the scientific medical community and patient population. Neuroanatomical changes associated with effective ECT can be better described as ECT-induced brain neuroplasticity or ECT-induced brain neuromodulation rather than ECT-induced brain damage. Metabolic Neuroimaging Studies.

Magnetic Resonance Spectroscopic Imaging Magnetic resonance spectroscopic imaging (MRSI) uses a phase-encoding procedure to map the spatial distribution of magnetic resonance (MR) signals of different molecules. The crucial difference, however, is that while MRI maps the MR signals of water molecules, MRSI maps the MR signals generated by different metabolites – such as N-acetyl aspartate (NAA) and choline-containing compounds. However, the concentration of these metabolites is at least 10,000 times lower than water molecules and hence the signal strength generated would also be correspondingly lower. However, MRSI offers us the unique advantage of studying in vivo the change in the concentration of brain metabolites, which has been of great significance in fields such as psychiatry, neurology, and basic neuroscience research.[47]MRSI studies on ECT in patients with depression have focused largely on four metabolites in the human brain – NAA, choline-containing compounds (Cho) which include majorly cell membrane compounds such as glycerophosphocholine, phosphocholine and a miniscule contribution from acetylcholine, creatinine (Cr) and glutamine and glutamate together (Glx). NAA is located exclusively in the neurons, and is suggested to be a marker of neuronal viability and functionality.[48] Choline-containing compounds (Cho) mainly include the membrane compounds, and an increase in Cho would be suggestive of increased membrane turnover.

Cr serves as a marker of cellular energy metabolism, and its levels are usually expected to remain stable. The regions which have been most widely studied in MRSI studies include the bilateral hippocampus and amygdala, dorsolateral prefrontal cortex (DLPFC), and ACC.Till date, five MRSI studies have measured NAA concentration in the hippocampus before and after ECT. Of these, three studies showed that there is no significant change in the NAA concentration in the hippocampus following ECT.[33],[38],[49] On the other hand, two recent studies have demonstrated a statistically significant reduction in NAA concentration in the hippocampus following ECT.[39],[40] The implications of these results are of significant interest to us in answering our titular question. A normal level of NAA following ECT could signify that there is no significant neuronal death or damage following ECT, while a reduction would signal the opposite. However, a direct comparison between these studies is complicated chiefly due to the different ECT protocols, which has been used in these studies.

It must, however, be acknowledged that the three older studies used 1.5 T MRI, whereas the two newer studies used a higher 3 T MRI which offers betters signal-to-noise ratio and hence lesser risk of errors in the measurement of metabolite concentrations. The authors of a study by Njau et al.[39] argue that a change in NAA levels might reflect reversible changes in neural metabolism rather than a permanent change in the number or density of neurons and also that reduced NAA might point to a change in the ratio of mature to immature neurons, which, in fact, might reflect enhanced adult neurogenesis. Thus, the authors warn that to conclude whether a reduction in NAA concentration is beneficial or harmful would take a simultaneous measurement of cognitive functioning, which was lacking in their study. In 2017, Cano et al. Also demonstrated a significant reduction in NAA/Cr ratio in the hippocampus post ECT.

More significantly, the authors also showed a significant increase in Glx levels in the hippocampus following ECT, which was also associated with an increase in hippocampal volume.[40] To explain these three findings, the authors proposed that ECT produces a neuroinflammatory response in the hippocampus – likely mediated by Glx, which has been known to cause inflammation at higher concentrations, thereby accounting for the increase in hippocampal volume with a reduction in NAA concentration. The cause for the volume increase remains unclear – with the authors speculating that it might be due to neuronal swelling or due to angiogenesis. However, the same study and multiple other past studies [21],[25],[30] have demonstrated that hippocampal volume increase was correlated with clinical improvement following ECT. Thus, we are led to the hypothesis that the same mechanism which drives clinical improvement with ECT is also responsible for the cognitive impairment following ECT. Whether this is a purely neuroinflammatory response or a neuroplastic response or a neuroinflammatory response leading to some form of neuroplasticity is a critical question, which remains to be answered.[40]Studies which have analyzed NAA concentration change in other brain areas have also produced conflicting results.

The ACC is another area which has been studied in some detail utilizing the MRSI technique. In 2003, Pfleiderer et al. Demonstrated that there was no significant change in the NAA and Cho levels in the ACC following ECT. This would seem to suggest that there was no neurogenesis or membrane turnover in the ACC post ECT.[36] However, this finding was contested by Merkl et al. In 2011, who demonstrated that NAA levels were significantly reduced in the left ACC in patients with depression and that these levels were significantly elevated following ECT.[37] This again is contested by Njau et al.

Who showed that NAA levels are significantly reduced following ECT in the left dorsal ACC.[39] A direct comparison of these three studies is complicated by the different ECT and imaging parameters used and hence, no firm conclusion can be made on this point at this stage. In addition to this, one study had demonstrated increased NAA levels in the amygdala following administration of ECT,[34] with a trend level increase in Cho levels, which again is suggestive of neurogenesis and/or neuroplasticity. A review of studies on the DLPFC reveals a similarly confusing picture with one study, each showing no change, reduction, and elevation of concentration of NAA following ECT.[35],[37],[39] Here, again, a direct comparison of the three studies is made difficult by the heterogeneous imaging and ECT protocols followed by them.A total of five studies have analyzed the concentration of choline-containing compounds (Cho) in patients undergoing ECT. Conceptually, an increase in Cho signals is indicative of increased membrane turnover, which is postulated to be associated with synaptogenesis, neurogenesis, and maturation of neurons.[31] Of these, two studies measured Cho concentration in the B/L hippocampus, with contrasting results. Ende et al.

In 2000 demonstrated a significant elevation in Cho levels in B/L hippocampus after ECT, while Jorgensen et al. In 2015 failed to replicate the same finding.[33],[38] Cho levels have also been studied in the amygdala, ACC, and the DLPFC. However, none of these studies showed a significant increase or decrease in Cho levels before and after ECT in the respective brain regions studied. In addition, no significant difference was seen in the pre-ECT Cho levels of patients compared to healthy controls.[34],[36],[37]In review, we must admit that MRSI studies are still at a preliminary stage with significant heterogeneity in ECT protocols, patient population, and regions of the brain studied. At this stage, it is difficult to draw any firm conclusions except to acknowledge the fact that the more recent studies – Njau et al., 2017, Cano, 2017, and Jorgensen et al., 2015 – have shown decrease in NAA concentration and no increase in Cho levels [38],[39],[40] – as opposed to the earlier studies by Ende et al.[33] The view offered by the more recent studies is one of a neuroinflammatory models of action of ECT, probably driving neuroplasticity in the hippocampus.

This would offer a mechanistic understanding of both clinical response and the phenomenon of cognitive impairment associated with ECT. However, this conclusion is based on conjecture, and more work needs to be done in this area. Body Fluid Biochemical Marker Studies Another line of evidence for analyzing the effect of ECT on the human brain is the study of concentration of neurotrophins in the plasma or serum. Neurotrophins are small protein molecules which mediate neuronal survival and development. The most prominent among these is brain-derived neurotrophic factor (BDNF) which plays an important role in neuronal survival, plasticity, and migration.[50] A neurotrophic theory of mood disorders was suggested which hypothesized that depressive disorders are associated with a decreased expression of BDNF in the limbic structures, resulting in the atrophy of these structures.[51] It was also postulated that antidepressant treatment has a neurotrophic effect which reverses the neuronal cell loss, thereby producing a therapeutic effect.

It has been well established that BDNF is decreased in mood disorders.[52] It has also been shown that clinical improvement of depression is associated with increase in BDNF levels.[53] Thus, serum BDNF levels have been tentatively proposed as a biomarker for treatment response in depression. Recent meta-analytic evidence has shown that ECT is associated with significant increase in serum BDNF levels in patients with major depressive disorder.[54] Considering that BDNF is a potent stimulator of neurogenesis, the elevation of serum BDNF levels following ECT lends further credence to the theory that ECT leads to neurogenesis in the hippocampus and other limbic structures, which, in turn, mediates the therapeutic action of ECT. Cognitive Impairment Studies Cognitive impairment has always been the single-most important side effect associated with ECT.[55] Concerns regarding long-term cognitive impairment surfaced soon after the introduction of ECT and since then has grown to become one of the most controversial aspects of ECT.[56] Anti-ECT groups have frequently pointed out to cognitive impairment following ECT as evidence of ECT causing brain damage.[56] A meta-analysis by Semkovska and McLoughlin in 2010 is one of the most detailed studies which had attempted to settle this long-standing debate.[57] The authors reviewed 84 studies (2981 participants), which had used a combined total of 22 standardized neuropsychological tests assessing various cognitive functions before and after ECT in patients diagnosed with major depressive disorder. The different cognitive domains reviewed included processing speed, attention/working memory, verbal episodic memory, visual episodic memory, spatial problem-solving, executive functioning, and intellectual ability. The authors concluded that administration of ECT for depression is associated with significant cognitive impairment in the first few days after ECT administration.

However, it was also seen that impairment in cognitive functioning resolved within a span of 2 weeks and thereafter, a majority of cognitive domains even showed mild improvement compared to the baseline performance. It was also demonstrated that not a single cognitive domain showed persistence of impairment beyond 15 days after ECT.Memory impairment following ECT can be analyzed broadly under two conceptual schemes – one that classifies memory impairment as objective memory impairment and subjective memory impairment and the other that classifies it as impairment in anterograde memory versus impairment in retrograde memory. Objective memory can be roughly defined as the ability to retrieve stored information and can be measured by various standardized neuropsychological tests. Subjective memory or meta-memory, on the other hand, refers to the ability to make judgments about one's ability to retrieve stored information.[58] As described previously, it has been conclusively demonstrated that anterograde memory impairment does not persist beyond 2 weeks after ECT.[57] However, one of the major limitations of this meta-analysis was the lack of evidence on retrograde amnesia following ECT. This is particularly unfortunate considering that it is memory impairment – particularly retrograde amnesia which has received the most attention.[59] In addition, reports of catastrophic retrograde amnesia have been repeatedly held up as sensational evidence of the lasting brain damage produced by ECT.[59] Admittedly, studies on retrograde amnesia are fewer and less conclusive than on anterograde amnesia.[60],[61] At present, the results are conflicting, with some studies finding some impairment in retrograde memory – particularly autobiographical retrograde memory up to 6 months after ECT.[62],[63],[64],[65] However, more recent studies have failed to support this finding.[66],[67] While they do demonstrate an impairment in retrograde memory immediately after ECT, it was seen that this deficit returned to pre-ECT levels within a span of 1–2 months and improved beyond baseline performance at 6 months post ECT.[66] Adding to the confusion are numerous factors which confound the assessment of retrograde amnesia.

It has been shown that depressive symptoms can produce significant impairment of retrograde memory.[68],[69] It has also been demonstrated that sine-wave ECT produces significantly more impairment of retrograde memory as compared to brief-pulse ECT.[70] However, from the 1990s onward, sine-wave ECT has been completely replaced by brief-pulse ECT, and it is unclear as to the implications of cognitive impairment from the sine-wave era in contemporary ECT practice.Another area of concern are reports of subjective memory impairment following ECT. One of the pioneers of research into subjective memory impairment were Squire and Chace who published a series of studies in the 1970s demonstrating the adverse effect of bilateral ECT on subjective assessment of memory.[62],[63],[64],[65] However, most of the studies conducted post 1980 – from when sine-wave ECT was replaced by brief-pulse ECT report a general improvement in subjective memory assessments following ECT.[71] In addition, most of the recent studies have failed to find a significant association between measures of subjective and objective memory.[63],[66],[70],[72],[73],[74] It has also been shown that subjective memory impairment is strongly associated with the severity of depressive symptoms.[75] In light of these facts, the validity and value of measures of subjective memory impairment as a marker of cognitive impairment and brain damage following ECT have been questioned. However, concerns regarding subjective memory impairment and catastrophic retrograde amnesia continue to persist, with significant dissonance between the findings of different research groups and patient self-reports in various media.[57]Some studies reported the possibility of ECT being associated with the development of subsequent dementia.[76],[77] However, a recent large, well-controlled prospective Danish study found that the use of ECT was not associated with elevated incidence of dementia.[78] Conclusion Our titular question is whether ECT leads to brain damage, where damage indicates destruction or degeneration of nerves or nerve tracts in the brain, which leads to loss of function. This issue was last addressed by Devanand et al. In 1994 since which time our understanding of ECT has grown substantially, helped particularly by the advent of modern-day neuroimaging techniques which we have reviewed in detail.

And, what these studies reveal is rather than damaging the brain, ECT has a neuromodulatory effect on the brain. The various lines of evidence – structural neuroimaging studies, functional neuroimaging studies, neurochemical and metabolic studies, and serum BDNF studies all point toward this. These neuromodulatory changes have been localized to the hippocampus, amygdala, and certain other parts of the limbic system. How exactly these changes mediate the improvement of depressive symptoms is a question that remains unanswered. However, there is little by way of evidence from neuroimaging studies which indicates that ECT causes destruction or degeneration of neurons.

Though cognitive impairment studies do show that there is objective impairment of certain functions – particularly memory immediately after ECT, these impairments are transient with full recovery within a span of 2 weeks. Perhaps, the single-most important unaddressed concern is retrograde amnesia, which has been shown to persist for up to 2 months post ECT. In this regard, the recent neurometabolic studies have offered a tentative mechanism of action of ECT, producing a transient inflammation in the limbic cortex, which, in turn, drives neurogenesis, thereby exerting a neuromodulatory effect. This hypothesis would explain both the cognitive adverse effects of ECT – due to the transient inflammation – and the long-term improvement in mood – neurogenesis in the hippocampus. Although unproven at present, such a hypothesis would imply that cognitive impairment is tied in with the mechanism of action of ECT and not an indicator of damage to the brain produced by ECT.The review of literature suggests that ECT does cause at least structural and functional changes in the brain, and these are in all probability related to the effects of the ECT.

However, these cannot be construed as brain damage as is usually understood. Due to the relative scarcity of data that directly examines the question of whether ECT causes brain damage, it is not possible to conclusively answer this question. However, in light of enduring ECT survivor accounts, there is a need to design studies that specifically answer this question.Financial support and sponsorshipNil.Conflicts of interestThere are no conflicts of interest. References 1.Payne NA, Prudic J. Electroconvulsive therapy.

Part I. A perspective on the evolution and current practice of ECT. J Psychiatr Pract 2009;15:346-68. 2.Lauber C, Nordt C, Falcato L, Rössler W. Can a seizure help?.

The public's attitude toward electroconvulsive therapy. Psychiatry Res 2005;134:205-9. 3.Stefanazzi M. Is electroconvulsive therapy (ECT) ever ethically justified?. If so, under what circumstances.

HEC Forum 2013;25:79-94. 4.Devanand DP, Dwork AJ, Hutchinson ER, Bolwig TG, Sackeim HA. Does ECT alter brain structure?. Am J Psychiatry 1994;151:957-70. 5.Devanand DP.

Does electroconvulsive therapy damage brain cells?. Semin Neurol 1995;15:351-7. 6.Pearsall J, Trumble B, editors. The Oxford English Reference Dictionary. 2nd ed.

Oxford, England. New York. Oxford University Press. 1996. 7.Collin PH.

Dictionary of Medical Terms. 4th ed. London. Bloomsbury. 2004.

8.Hajdu SI. Entries on laboratory medicine in the first illustrated medical dictionary. Ann Clin Lab Sci 2005;35:465-8. 9.Mander AJ, Whitfield A, Kean DM, Smith MA, Douglas RH, Kendell RE. Cerebral and brain stem changes after ECT revealed by nuclear magnetic resonance imaging.

Br J Psychiatry 1987;151:69-71. 10.Coffey CE, Weiner RD, Djang WT, Figiel GS, Soady SA, Patterson LJ, et al. Brain anatomic effects of electroconvulsive therapy. A prospective magnetic resonance imaging study. Arch Gen Psychiatry 1991;48:1013-21.

11.Scott AI, Douglas RH, Whitfield A, Kendell RE. Time course of cerebral magnetic resonance changes after electroconvulsive therapy. Br J Psychiatry 1990;156:551-3. 12.Pande AC, Grunhaus LJ, Aisen AM, Haskett RF. A preliminary magnetic resonance imaging study of ECT-treated depressed patients.

Biol Psychiatry 1990;27:102-4. 13.Coffey CE, Figiel GS, Djang WT, Sullivan DC, Herfkens RJ, Weiner RD. Effects of ECT on brain structure. A pilot prospective magnetic resonance imaging study. Am J Psychiatry 1988;145:701-6.

14.Qiu H, Li X, Zhao W, Du L, Huang P, Fu Y, et al. Electroconvulsive therapy-Induced brain structural and functional changes in major depressive disorders. A longitudinal study. Med Sci Monit 2016;22:4577-86. 15.Kunigiri G, Jayakumar PN, Janakiramaiah N, Gangadhar BN.

MRI T2 relaxometry of brain regions and cognitive dysfunction following electroconvulsive therapy. Indian J Psychiatry 2007;49:195-9. [PUBMED] [Full text] 16.Pirnia T, Joshi SH, Leaver AM, Vasavada M, Njau S, Woods RP, et al. Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex. Transl Psychiatry 2016;6:e832.

17.Szabo K, Hirsch JG, Krause M, Ende G, Henn FA, Sartorius A, et al. Diffusion weighted MRI in the early phase after electroconvulsive therapy. Neurol Res 2007;29:256-9. 18.Nordanskog P, Dahlstrand U, Larsson MR, Larsson EM, Knutsson L, Johanson A. Increase in hippocampal volume after electroconvulsive therapy in patients with depression.

A volumetric magnetic resonance imaging study. J ECT 2010;26:62-7. 19.Nordanskog P, Larsson MR, Larsson EM, Johanson A. Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression. Acta Psychiatr Scand 2014;129:303-11.

20.Tendolkar I, van Beek M, van Oostrom I, Mulder M, Janzing J, Voshaar RO, et al. Electroconvulsive therapy increases hippocampal and amygdala volume in therapy refractory depression. A longitudinal pilot study. Psychiatry Res 2013;214:197-203. 21.Dukart J, Regen F, Kherif F, Colla M, Bajbouj M, Heuser I, et al.

Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders. Proc Natl Acad Sci U S A 2014;111:1156-61. 22.Abbott CC, Jones T, Lemke NT, Gallegos P, McClintock SM, Mayer AR, et al. Hippocampal structural and functional changes associated with electroconvulsive therapy response. Transl Psychiatry 2014;4:e483.

23.Lyden H, Espinoza RT, Pirnia T, Clark K, Joshi SH, Leaver AM, et al. Electroconvulsive therapy mediates neuroplasticity of white matter microstructure in major depression. Transl Psychiatry 2014;4:e380. 24.Bouckaert F, De Winter FL, Emsell L, Dols A, Rhebergen D, Wampers M, et al. Grey matter volume increase following electroconvulsive therapy in patients with late life depression.

A longitudinal MRI study. J Psychiatry Neurosci 2016;41:105-14. 25.Ota M, Noda T, Sato N, Okazaki M, Ishikawa M, Hattori K, et al. Effect of electroconvulsive therapy on gray matter volume in major depressive disorder. J Affect Disord 2015;186:186-91.

26.Zeng J, Luo Q, Du L, Liao W, Li Y, Liu H, et al. Reorganization of anatomical connectome following electroconvulsive therapy in major depressive disorder. Neural Plast 2015;2015:271674. 27.van Eijndhoven P, Mulders P, Kwekkeboom L, van Oostrom I, van Beek M, Janzing J, et al. Bilateral ECT induces bilateral increases in regional cortical thickness.

Transl Psychiatry 2016;6:e874. 28.Bouckaert F, Dols A, Emsell L, De Winter FL, Vansteelandt K, Claes L, et al. Relationship between hippocampal volume, serum BDNF, and depression severity following electroconvulsive therapy in late-life depression. Neuropsychopharmacology 2016;41:2741-8. 29.Depping MS, Nolte HM, Hirjak D, Palm E, Hofer S, Stieltjes B, et al.

Cerebellar volume change in response to electroconvulsive therapy in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 2017;73:31-5. 30.Joshi SH, Espinoza RT, Pirnia T, Shi J, Wang Y, Ayers B, et al. Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression. Biol Psychiatry 2016;79:282-92.

31.Wade BS, Joshi SH, Njau S, Leaver AM, Vasavada M, Woods RP, et al. Effect of electroconvulsive therapy on striatal morphometry in major depressive disorder. Neuropsychopharmacology 2016;41:2481-91. 32.Wolf RC, Nolte HM, Hirjak D, Hofer S, Seidl U, Depping MS, et al. Structural network changes in patients with major depression and schizophrenia treated with electroconvulsive therapy.

Eur Neuropsychopharmacol 2016;26:1465-74. 33.Ende G, Braus DF, Walter S, Weber-Fahr W, Henn FA. The hippocampus in patients treated with electroconvulsive therapy. A proton magnetic resonance spectroscopic imaging study. Arch Gen Psychiatry 2000;57:937-43.

34.Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B. Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychol Med 2003;33:1277-84. 35.Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B. Neurotrophic effects of electroconvulsive therapy.

A proton magnetic resonance study of the left amygdalar region in patients with treatment-resistant depression. Neuropsychopharmacology 2003;28:720-5. 36.Pfleiderer B, Michael N, Erfurth A, Ohrmann P, Hohmann U, Wolgast M, et al. Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Res 2003;122:185-92.

37.Merkl A, Schubert F, Quante A, Luborzewski A, Brakemeier EL, Grimm S, et al. Abnormal cingulate and prefrontal cortical neurochemistry in major depression after electroconvulsive therapy. Biol Psychiatry 2011;69:772-9. 38.Jorgensen A, Magnusson P, Hanson LG, Kirkegaard T, Benveniste H, Lee H, et al. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression.

Acta Psychiatr Scand 2016;133:154-64. 39.Njau S, Joshi SH, Espinoza R, Leaver AM, Vasavada M, Marquina A, et al. Neurochemical correlates of rapid treatment response to electroconvulsive therapy in patients with major depression. J Psychiatry Neurosci 2017;42:6-16. 40.Cano M, Martínez-Zalacaín I, Bernabéu-Sanz Á, Contreras-Rodríguez O, Hernández-Ribas R, Via E, et al.

Brain volumetric and metabolic correlates of electroconvulsive therapy for treatment-resistant depression. A longitudinal neuroimaging study. Transl Psychiatry 2017;7:e1023. 41.Figiel GS, Krishnan KR, Doraiswamy PM. Subcortical structural changes in ECT-induced delirium.

J Geriatr Psychiatry Neurol 1990;3:172-6. 42.Rotheneichner P, Lange S, O'Sullivan A, Marschallinger J, Zaunmair P, Geretsegger C, et al. Hippocampal neurogenesis and antidepressive therapy. Shocking relations. Neural Plast 2014;2014:723915.

43.Singh A, Kar SK. How electroconvulsive therapy works?. Understanding the neurobiological mechanisms. Clin Psychopharmacol Neurosci 2017;15:210-21. 44.Gbyl K, Videbech P.

Electroconvulsive therapy increases brain volume in major depression. A systematic review and meta-analysis. Acta Psychiatr Scand 2018;138:180-95. 45.Oltedal L, Narr KL, Abbott C, Anand A, Argyelan M, Bartsch H, et al. Volume of the human hippocampus and clinical response following electroconvulsive therapy.

Biol Psychiatry 2018;84:574-81. 46.Breggin PR. Brain-Disabling Treatments in Psychiatry. Drugs, Electroshock, and the Role of the FDA. New York.

Springer Pub. Co.. 1997. 47.Posse S, Otazo R, Dager SR, Alger J. MR spectroscopic imaging.

Principles and recent advances. J Magn Reson Imaging 2013;37:1301-25. 48.Simmons ML, Frondoza CG, Coyle JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 1991;45:37-45.

49.Obergriesser T, Ende G, Braus DF, Henn FA. Long-term follow-up of magnetic resonance-detectable choline signal changes in the hippocampus of patients treated with electroconvulsive therapy. J Clin Psychiatry 2003;64:775-80. 50.Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity.

The synaptic consolidation hypothesis. Prog Neurobiol 2005;76:99-125. 51.Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006;59:1116-27.

52.Bocchio-Chiavetto L, Bagnardi V, Zanardini R, Molteni R, Nielsen MG, Placentino A, et al. Serum and plasma BDNF levels in major depression. A replication study and meta-analyses. World J Biol Psychiatry 2010;11:763-73. 53.Brunoni AR, Lopes M, Fregni F.

A systematic review and meta-analysis of clinical studies on major depression and BDNF levels. Implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol 2008;11:1169-80. 54.Rocha RB, Dondossola ER, Grande AJ, Colonetti T, Ceretta LB, Passos IC, et al. Increased BDNF levels after electroconvulsive therapy in patients with major depressive disorder.

A meta-analysis study. J Psychiatr Res 2016;83:47-53. 55.UK ECT Review Group. Efficacy and safety of electroconvulsive therapy in depressive disorders. A systematic review and meta-analysis.

Lancet 2003;361:799-808. 56.57.Semkovska M, McLoughlin DM. Objective cognitive performance associated with electroconvulsive therapy for depression. A systematic review and meta-analysis. Biol Psychiatry 2010;68:568-77.

58.Tulving E, Madigan SA. Memory and verbal learning. Annu Rev Psychol 1970;21:437-84. 59.Rose D, Fleischmann P, Wykes T, Leese M, Bindman J. Patients' perspectives on electroconvulsive therapy.

Systematic review. BMJ 2003;326:1363. 60.Semkovska M, McLoughlin DM. Measuring retrograde autobiographical amnesia following electroconvulsive therapy. Historical perspective and current issues.

J ECT 2013;29:127-33. 61.Fraser LM, O'Carroll RE, Ebmeier KP. The effect of electroconvulsive therapy on autobiographical memory. A systematic review. J ECT 2008;24:10-7.

62.Squire LR, Chace PM. Memory functions six to nine months after electroconvulsive therapy. Arch Gen Psychiatry 1975;32:1557-64. 63.Squire LR, Slater PC. Electroconvulsive therapy and complaints of memory dysfunction.

A prospective three-year follow-up study. Br J Psychiatry 1983;142:1-8. 64.Squire LR, Slater PC, Miller PL. Retrograde amnesia and bilateral electroconvulsive therapy. Long-term follow-up.

Arch Gen Psychiatry 1981;38:89-95. 65.Squire LR, Wetzel CD, Slater PC. Memory complaint after electroconvulsive therapy. Assessment with a new self-rating instrument. Biol Psychiatry 1979;14:791-801.

66.Calev A, Nigal D, Shapira B, Tubi N, Chazan S, Ben-Yehuda Y, et al. Early and long-term effects of electroconvulsive therapy and depression on memory and other cognitive functions. J Nerv Ment Dis 1991;179:526-33. 67.Sackeim HA, Prudic J, Devanand DP, Nobler MS, Lisanby SH, Peyser S, et al. A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities.

Arch Gen Psychiatry 2000;57:425-34. 68.Abrams R. Does brief-pulse ECT cause persistent or permanent memory impairment?. J ECT 2002;18:71-3. 69.Peretti CS, Danion JM, Grangé D, Mobarek N.

Bilateral ECT and autobiographical memory of subjective experiences related to melancholia. A pilot study. J Affect Disord 1996;41:9-15. 70.Weiner RD, Rogers HJ, Davidson JR, Squire LR. Effects of stimulus parameters on cognitive side effects.

Ann N Y Acad Sci 1986;462:315-25. 71.Prudic J, Peyser S, Sackeim HA. Subjective memory complaints. A review of patient self-assessment of memory after electroconvulsive therapy. J ECT 2000;16:121-32.

72.Sackeim HA, Prudic J, Devanand DP, Kiersky JE, Fitzsimons L, Moody BJ, et al. Effects of stimulus intensity and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. N Engl J Med 1993;328:839-46. 73.Frith CD, Stevens M, Johnstone EC, Deakin JF, Lawler P, Crow TJ. Effects of ECT and depression on various aspects of memory.

Br J Psychiatry 1983;142:610-7. 74.Ng C, Schweitzer I, Alexopoulos P, Celi E, Wong L, Tuckwell V, et al. Efficacy and cognitive effects of right unilateral electroconvulsive therapy. J ECT 2000;16:370-9. 75.Coleman EA, Sackeim HA, Prudic J, Devanand DP, McElhiney MC, Moody BJ.

Subjective memory complaints prior to and following electroconvulsive therapy. Biol Psychiatry 1996;39:346-56. 76.Berggren Š, Gustafson L, Höglund P, Johanson A. A long-term longitudinal follow-up of depressed patients treated with ECT with special focus on development of dementia. J Affect Disord 2016;200:15-24.

77.Brodaty H, Hickie I, Mason C, Prenter L. A prospective follow-up study of ECT outcome in older depressed patients. J Affect Disord 2000;60:101-11. 78.Osler M, Rozing MP, Christensen GT, Andersen PK, Jørgensen MB. Electroconvulsive therapy and risk of dementia in patients with affective disorders.

A cohort study. Lancet Psychiatry 2018;5:348-56. Correspondence Address:Dr. Shubh Mohan SinghDepartment of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh IndiaSource of Support. None, Conflict of Interest.

NoneDOI. 10.4103/psychiatry.IndianJPsychiatry_239_19 Tables [Table 1], [Table 2].

How to cite this article:Singh buy generic aldactone online O P aldactone plus. Aftermath of celebrity suicide – Media coverage and role of psychiatrists. Indian J Psychiatry 2020;62:337-8Celebrity suicide is buy generic aldactone online one of the highly publicized events in our country. Indians got a glimpse of this following an unfortunate incident where a popular Hindi film actor died of suicide.

As expected, the media went into a frenzy as newspapers, news channels, and social buy generic aldactone online media were full of stories providing minute details of the suicidal act. Some even going as far as highlighting the color of the cloth used in the suicide as well as showing the lifeless body of the actor. All kinds of personal details were dug up, and speculations and hypotheses became the order of the day in the next few days that followed. In the process, reputations of many people associated with the actor were besmirched and their private and personal details were freely and blatantly broadcast and discussed on buy generic aldactone online electronic, print, and social media.

We understand that media houses have their own need and duty to report and sensationalize news for increasing their visibility (aka TRP), but such reporting has huge impacts on the mental health of the vulnerable population.The impact of this was soon realized when many incidents of copycat suicide were reported from all over the country within a few days of the incident. Psychiatrists suddenly started getting distress calls from their patients in buy generic aldactone online despair with increased suicidal ideation. This has become a major area of concern for the psychiatry community.The Indian Psychiatric Society has been consistently trying to engage with media to promote ethical reporting of suicide. Section 24 buy generic aldactone online (1) of Mental Health Care Act, 2017, forbids publication of photograph of mentally ill person without his consent.[1] The Press Council of India has adopted the guidelines of World Health Organization report on Preventing Suicide.

A resource for media professionals, which came out with an advisory to be followed by media in reporting cases of suicide. It includes points forbidding them from putting stories in prominent positions and unduly repeating them, explicitly describing the method used, providing details about the site/location, using sensational headlines, or using photographs and video footage of the incident.[2] Unfortunately, the advisory seems to have little effect in the aftermath of celebrity suicides. Channels were full of speculations about the person's mental buy generic aldactone online condition and illness and also his relationships and finances. Many fictional accounts of his symptoms and illness were touted, which is not only against the ethics but is also contrary to MHCA, 2017.[1]It went to the extent that the name of his psychiatrist was mentioned and quotes were attributed to him without taking any account from him.

The Indian Psychiatric Society has written to the Press Council of India underlining this concern and asking for measures to ensure ethics in reporting suicide.While there is a need for engagement with media to make them aware of the grave impact of negative suicide reporting on the lives of many vulnerable persons, there is even a more urgent need for training of psychiatrists regarding buy generic aldactone online the proper way of interaction with media. This has been amply brought out in the aftermath of this incident. Many psychiatrists buy generic aldactone online and mental health professionals were called by media houses to comment on the episode. Many psychiatrists were quoted, or “misquoted,” or “quoted out of context,” commenting on the life of a person whom they had never examined and had no “professional authority” to do so.

There were even stories with byline of a psychiatrist where the content provided was not only unscientific but also way beyond the expertise of a psychiatrist. These types of viewpoints perpetuate stigma, myths, and “misleading concepts” about psychiatry and buy generic aldactone online are detrimental to the image of psychiatry in addition to doing harm and injustice to our patients. Hence, the need to formulate a guideline for interaction of psychiatrists with the media is imperative.In the infamous Goldwater episode, 12,356 psychiatrists were asked to cast opinion about the fitness of Barry Goldwater for presidential candidature. Out of 2417 respondents, 1189 psychiatrists reported him buy generic aldactone online to be mentally unfit while none had actually examined him.[3] This led to the formulation of “The Goldwater Rule” by the American Psychiatric Association in 1973,[4] but we have witnessed the same phenomenon at the time of presidential candidature of Donald Trump.Psychiatrists should be encouraged to interact with media to provide scientific information about mental illnesses and reduction of stigma, but “statements to the media” can be a double-edged sword, and we should know about the rules of engagements and boundaries of interactions.

Methods and principles of interaction with media should form a part of our training curriculum. Many professional societies have guidelines and resource books for interacting with media, buy generic aldactone online and psychiatrists should familiarize themselves with these documents. The Press Council guideline is likely to prompt reporters to seek psychiatrists for their expert opinion. It is useful for them to have a template ready with suicide rates, emphasizing multicausality of suicide, role of mental disorders, as well as help available.[5]It is about time that the Indian Psychiatric Society formulated its own guidelines laying down the broad principles and boundaries governing the interaction of Indian psychiatrists with the media.

Till then, it is desirable to be guided by the following broad principles:It should be assumed that no statement goes “off the record” as the media person is most likely recording the interview, and we should also record any such conversation from our endIt should be clarified in which capacity comments are buy generic aldactone online being made – professional, personal, or as a representative of an organizationOne should not comment on any person whom he has not examinedPsychiatrists should take any such opportunity to educate the public about mental health issuesThe comments should be justified and limited by the boundaries of scientific knowledge available at the moment. References Correspondence Address:Dr. O P SinghAA 304, Ashabari Apartments, O/31, Baishnabghata, Patuli Township, Kolkata - 700 094, West Bengal IndiaSource of Support buy generic aldactone online. None, Conflict of Interest.

NoneDOI. 10.4103/psychiatry.IndianJPsychiatry_816_20Abstract Electroconvulsive therapy (ECT) is an effective modality of treatment for a variety of psychiatric disorders. However, it has always been accused of being a coercive, unethical, and dangerous modality of treatment. The dangerousness of ECT has been mainly attributed to its claimed ability to cause brain damage.

This narrative review aims to provide an update of the evidence with regard to whether the practice of ECT is associated with damage to the brain. An accepted definition of brain damage remains elusive. There are also ethical and technical problems in designing studies that look at this question specifically. Thus, even though there are newer technological tools and innovations, any review attempting to answer this question would have to take recourse to indirect methods.

These include structural, functional, and metabolic neuroimaging. Body fluid biochemical marker studies. And follow-up studies of cognitive impairment and incidence of dementia in people who have received ECT among others. The review of literature and present evidence suggests that ECT has a demonstrable impact on the structure and function of the brain.

However, there is a lack of evidence at present to suggest that ECT causes brain damage.Keywords. Adverse effect, brain damage, electroconvulsive therapyHow to cite this article:Jolly AJ, Singh SM. Does electroconvulsive therapy cause brain damage. An update.

Indian J Psychiatry 2020;62:339-53 Introduction Electroconvulsive therapy (ECT) as a modality of treatment for psychiatric disorders has existed at least since 1938.[1] ECT is an effective modality of treatment for various psychiatric disorders. However, from the very beginning, the practice of ECT has also faced resistance from various groups who claim that it is coercive and harmful.[2] While the ethical aspects of the practice of ECT have been dealt with elsewhere, the question of harmfulness or brain damage consequent upon the passage of electric current needs to be examined afresh in light of technological advances and new knowledge.[3]The question whether ECT causes brain damage was reviewed in a holistic fashion by Devanand et al. In the mid-1990s.[4],[5] The authors had attempted to answer this question by reviewing the effect of ECT on the brain in various areas – cognitive side effects, structural neuroimaging studies, neuropathologic studies of patients who had received ECT, autopsy studies of epileptic patients, and finally animal ECS studies. The authors had concluded that ECT does not produce brain damage.This narrative review aims to update the evidence with regard to whether ECT causes brain damage by reviewing relevant literature from 1994 to the present time.

Framing the Question The Oxford Dictionary defines damage as physical harm that impairs the value, usefulness, or normal function of something.[6] Among medical dictionaries, the Peter Collins Dictionary defines damage as harm done to things (noun) or to harm something (verb).[7] Brain damage is defined by the British Medical Association Medical Dictionary as degeneration or death of nerve cells and tracts within the brain that may be localized to a particular area of the brain or diffuse.[8] Going by such a definition, brain damage in the context of ECT should refer to death or degeneration of brain tissue, which results in the impairment of functioning of the brain. The importance of precisely defining brain damage shall become evident subsequently in this review.There are now many more tools available to investigate the structure and function of brain in health and illness. However, there are obvious ethical issues in designing human studies that are designed to answer this specific question. Therefore, one must necessarily take recourse to indirect evidences available through studies that have been designed to answer other research questions.

These studies have employed the following methods:Structural neuroimaging studiesFunctional neuroimaging studiesMetabolic neuroimaging studiesBody fluid biochemical marker studiesCognitive impairment studies.While the early studies tended to focus more on establishing the safety of ECT and finding out whether ECT causes gross microscopic brain damage, the later studies especially since the advent of advanced neuroimaging techniques have been focusing more on a mechanistic understanding of ECT. Hence, the primary objective of the later neuroimaging studies has been to look for structural and functional brain changes which might explain how ECT acts rather than evidence of gross structural damage per se. However, put together, all these studies would enable us to answer our titular question to some satisfaction. [Table 1] and [Table 2] provide an overview of the evidence base in this area.

Structural and Functional Neuroimaging Studies Devanand et al. Reviewed 16 structural neuroimaging studies on the effect of ECT on the brain.[4] Of these, two were pneumoencephalography studies, nine were computed tomography (CT) scan studies, and five were magnetic resonance imaging (MRI) studies. However, most of these studies were retrospective in design, with neuroimaging being done in patients who had received ECT in the past. In the absence of baseline neuroimaging, it would be very difficult to attribute any structural brain changes to ECT.

In addition, pneumoencephalography, CT scan, and even early 0.3 T MRI provided images with much lower spatial resolution than what is available today. The authors concluded that there was no evidence to show that ECT caused any structural damage to the brain.[4] Since then, at least twenty more MRI-based structural neuroimaging studies have studied the effect of ECT on the brain. The earliest MRI studies in the early 1990s focused on detecting structural damage following ECT. All of these studies were prospective in design, with the first MRI scan done at baseline and a second MRI scan performed post ECT.[9],[11],[12],[13],[41] While most of the studies imaged the patient once around 24 h after receiving ECT, some studies performed multiple post ECT neuroimaging in the first 24 h after ECT to better capture the acute changes.

A single study by Coffey et al. Followed up the patients for a duration of 6 months and repeated neuroimaging again at 6 months in order to capture any long-term changes following ECT.[10]The most important conclusion which emerged from this early series of studies was that there was no evidence of cortical atrophy, change in ventricle size, or increase in white matter hyperintensities.[4] The next major conclusion was that there appeared to be an increase in the T1 and T2 relaxation time immediately following ECT, which returned to normal within 24 h. This supported the theory that immediately following ECT, there appears to be a temporary breakdown of the blood–brain barrier, leading to water influx into the brain tissue.[11] The last significant observation by Coffey et al. In 1991 was that there was no significant temporal changes in the total volumes of the frontal lobes, temporal lobes, or amygdala–hippocampal complex.[10] This was, however, something which would later be refuted by high-resolution MRI studies.

Nonetheless, one inescapable conclusion of these early studies was that there was no evidence of any gross structural brain changes following administration of ECT. Much later in 2007, Szabo et al. Used diffusion-weighted MRI to image patients in the immediate post ECT period and failed to observe any obvious brain tissue changes following ECT.[17]The next major breakthrough came in 2010 when Nordanskog et al. Demonstrated that there was a significant increase in the volume of the hippocampus bilaterally following a course of ECT in a cohort of patients with depressive illness.[18] This contradicted the earlier observations by Coffey et al.

That there was no volume increase in any part of the brain following ECT.[10] This was quite an exciting finding and was followed by several similar studies. However, the perspective of these studies was quite different from the early studies. In contrast to the early studies looking for the evidence of ECT-related brain damage, the newer studies were focused more on elucidating the mechanism of action of ECT. Further on in 2014, Nordanskog et al.

In a follow-up study showed that though there was a significant increase in the volume of the hippocampus 1 week after a course of ECT, the hippocampal volume returned to the baseline after 6 months.[19] Two other studies in 2013 showed that in addition to the hippocampus, the amygdala also showed significant volume increase following ECT.[20],[21] A series of structural neuroimaging studies after that have expanded on these findings and as of now, gray matter volume increase following ECT has been demonstrated in the hippocampus, amygdala, anterior temporal pole, subgenual cortex,[21] right caudate nucleus, and the whole of the medial temporal lobe (MTL) consisting of the hippocampus, amygdala, insula, and the posterosuperior temporal cortex,[24] para hippocampi, right subgenual anterior cingulate gyrus, and right anterior cingulate gyrus,[25] left cerebellar area VIIa crus I,[29] putamen, caudate nucleus, and nucleus acumbens [31] and clusters of increased cortical thickness involving the temporal pole, middle and superior temporal cortex, insula, and inferior temporal cortex.[27] However, the most consistently reported and replicated finding has been the bilateral increase in the volume of the hippocampus and amygdala. In light of these findings, it has been tentatively suggested that ECT acts by inducing neuronal regeneration in the hippocampus – amygdala complex.[42],[43] However, there are certain inconsistencies to this hypothesis. Till date, only one study – Nordanskog et al., 2014 – has followed study patients for a long term – 6 months in their case. And significantly, the authors found out that after increasing immediately following ECT, the hippocampal volume returns back to baseline by 6 months.[19] This, however, was not associated with the relapse of depressive symptoms.

Another area of significant confusion has been the correlation of hippocampal volume increase with improvement of depressive symptoms. Though almost all studies demonstrate a significant increase in hippocampal volume following ECT, a majority of studies failed to demonstrate a correlation between symptom improvement and hippocampal volume increase.[19],[20],[22],[24],[28] However, a significant minority of volumetric studies have demonstrated correlation between increase in hippocampal and/or amygdala volume and improvement of symptoms.[21],[25],[30]Another set of studies have used diffusion tensor imaging, functional MRI (fMRI), anatomical connectome, and structural network analysis to study the effect of ECT on the brain. The first of these studies by Abbott et al. In 2014 demonstrated that on fMRI, the connectivity between right and left hippocampus was significantly reduced in patients with severe depression.

It was also shown that the connectivity was normalized following ECT, and symptom improvement was correlated with an increase in connectivity.[22] In a first of its kind DTI study, Lyden et al. In 2014 demonstrated that fractional anisotropy which is a measure of white matter tract or fiber density is increased post ECT in patients with severe depression in the anterior cingulum, forceps minor, and the dorsal aspect of the left superior longitudinal fasciculus. The authors suggested that ECT acts to normalize major depressive disorder-related abnormalities in the structural connectivity of the dorsal fronto-limbic pathways.[23] Another DTI study in 2015 constructed large-scale anatomical networks of the human brain – connectomes, based on white matter fiber tractography. The authors found significant reorganization in the anatomical connections involving the limbic structure, temporal lobe, and frontal lobe.

It was also found that connection changes between amygdala and para hippocampus correlated with reduction in depressive symptoms.[26] In 2016, Wolf et al. Used a source-based morphometry approach to study the structural networks in patients with depression and schizophrenia and the effect of ECT on the same. It was found that the medial prefrontal cortex/anterior cingulate cortex (ACC/MPFC) network, MTL network, bilateral thalamus, and left cerebellar regions/precuneus exhibited significant difference between healthy controls and the patient population. It was also demonstrated that administration of ECT leads to significant increase in the network strength of the ACC/MPFC network and the MTL network though the increase in network strength and symptom amelioration were not correlated.[32]Building on these studies, a recently published meta-analysis has attempted a quantitative synthesis of brain volume changes – focusing on hippocampal volume increase following ECT in patients with major depressive disorder and bipolar disorder.

The authors initially selected 32 original articles from which six articles met the criteria for quantitative synthesis. The results showed significant increase in the volume of the right and left hippocampus following ECT. For the rest of the brain regions, the heterogeneity in protocols and imaging techniques did not permit a quantitative analysis, and the authors have resorted to a narrative review similar to the present one with similar conclusions.[44] Focusing exclusively on hippocampal volume change in ECT, Oltedal et al. In 2018 conducted a mega-analysis of 281 patients with major depressive disorder treated with ECT enrolled at ten different global sites of the Global ECT-MRI Research Collaboration.[45] Similar to previous studies, there was a significant increase in hippocampal volume bilaterally with a dose–response relationship with the number of ECTs administered.

Furthermore, bilateral (B/L) ECT was associated with an equal increase in volume in both right and left hippocampus, whereas right unilateral ECT was associated with greater volume increase in the right hippocampus. Finally, contrary to expectation, clinical improvement was found to be negatively correlated with hippocampal volume.Thus, a review of the current evidence amply demonstrates that from looking for ECT-related brain damage – and finding none, we have now moved ahead to looking for a mechanistic understanding of the effect of ECT. In this regard, it has been found that ECT does induce structural changes in the brain – a fact which has been seized upon by some to claim that ECT causes brain damage.[46] Such statements should, however, be weighed against the definition of damage as understood by the scientific medical community and patient population. Neuroanatomical changes associated with effective ECT can be better described as ECT-induced brain neuroplasticity or ECT-induced brain neuromodulation rather than ECT-induced brain damage.

Metabolic Neuroimaging Studies. Magnetic Resonance Spectroscopic Imaging Magnetic resonance spectroscopic imaging (MRSI) uses a phase-encoding procedure to map the spatial distribution of magnetic resonance (MR) signals of different molecules. The crucial difference, however, is that while MRI maps the MR signals of water molecules, MRSI maps the MR signals generated by different metabolites – such as N-acetyl aspartate (NAA) and choline-containing compounds. However, the concentration of these metabolites is at least 10,000 times lower than water molecules and hence the signal strength generated would also be correspondingly lower.

However, MRSI offers us the unique advantage of studying in vivo the change in the concentration of brain metabolites, which has been of great significance in fields such as psychiatry, neurology, and basic neuroscience research.[47]MRSI studies on ECT in patients with depression have focused largely on four metabolites in the human brain – NAA, choline-containing compounds (Cho) which include majorly cell membrane compounds such as glycerophosphocholine, phosphocholine and a miniscule contribution from acetylcholine, creatinine (Cr) and glutamine and glutamate together (Glx). NAA is located exclusively in the neurons, and is suggested to be a marker of neuronal viability and functionality.[48] Choline-containing compounds (Cho) mainly include the membrane compounds, and an increase in Cho would be suggestive of increased membrane turnover. Cr serves as a marker of cellular energy metabolism, and its levels are usually expected to remain stable. The regions which have been most widely studied in MRSI studies include the bilateral hippocampus and amygdala, dorsolateral prefrontal cortex (DLPFC), and ACC.Till date, five MRSI studies have measured NAA concentration in the hippocampus before and after ECT.

Of these, three studies showed that there is no significant change in the NAA concentration in the hippocampus following ECT.[33],[38],[49] On the other hand, two recent studies have demonstrated a statistically significant reduction in NAA concentration in the hippocampus following ECT.[39],[40] The implications of these results are of significant interest to us in answering our titular question. A normal level of NAA following ECT could signify that there is no significant neuronal death or damage following ECT, while a reduction would signal the opposite. However, a direct comparison between these studies is complicated chiefly due to the different ECT protocols, which has been used in these studies. It must, however, be acknowledged that the three older studies used 1.5 T MRI, whereas the two newer studies used a higher 3 T MRI which offers betters signal-to-noise ratio and hence lesser risk of errors in the measurement of metabolite concentrations.

The authors of a study by Njau et al.[39] argue that a change in NAA levels might reflect reversible changes in neural metabolism rather than a permanent change in the number or density of neurons and also that reduced NAA might point to a change in the ratio of mature to immature neurons, which, in fact, might reflect enhanced adult neurogenesis. Thus, the authors warn that to conclude whether a reduction in NAA concentration is beneficial or harmful would take a simultaneous measurement of cognitive functioning, which was lacking in their study. In 2017, Cano et al. Also demonstrated a significant reduction in NAA/Cr ratio in the hippocampus post ECT.

More significantly, the authors also showed a significant increase in Glx levels in the hippocampus following ECT, which was also associated with an increase in hippocampal volume.[40] To explain these three findings, the authors proposed that ECT produces a neuroinflammatory response in the hippocampus – likely mediated by Glx, which has been known to cause inflammation at higher concentrations, thereby accounting for the increase in hippocampal volume with a reduction in NAA concentration. The cause for the volume increase remains unclear – with the authors speculating that it might be due to neuronal swelling or due to angiogenesis. However, the same study and multiple other past studies [21],[25],[30] have demonstrated that hippocampal volume increase was correlated with clinical improvement following ECT. Thus, we are led to the hypothesis that the same mechanism which drives clinical improvement with ECT is also responsible for the cognitive impairment following ECT.

Whether this is a purely neuroinflammatory response or a neuroplastic response or a neuroinflammatory response leading to some form of neuroplasticity is a critical question, which remains to be answered.[40]Studies which have analyzed NAA concentration change in other brain areas have also produced conflicting results. The ACC is another area which has been studied in some detail utilizing the MRSI technique. In 2003, Pfleiderer et al. Demonstrated that there was no significant change in the NAA and Cho levels in the ACC following ECT.

This would seem to suggest that there was no neurogenesis or membrane turnover in the ACC post ECT.[36] However, this finding was contested by Merkl et al. In 2011, who demonstrated that NAA levels were significantly reduced in the left ACC in patients with depression and that these levels were significantly elevated following ECT.[37] This again is contested by Njau et al. Who showed that NAA levels are significantly reduced following ECT in the left dorsal ACC.[39] A direct comparison of these three studies is complicated by the different ECT and imaging parameters used and hence, no firm conclusion can be made on this point at this stage. In addition to this, one study had demonstrated increased NAA levels in the amygdala following administration of ECT,[34] with a trend level increase in Cho levels, which again is suggestive of neurogenesis and/or neuroplasticity.

A review of studies on the DLPFC reveals a similarly confusing picture with one study, each showing no change, reduction, and elevation of concentration of NAA following ECT.[35],[37],[39] Here, again, a direct comparison of the three studies is made difficult by the heterogeneous imaging and ECT protocols followed by them.A total of five studies have analyzed the concentration of choline-containing compounds (Cho) in patients undergoing ECT. Conceptually, an increase in Cho signals is indicative of increased membrane turnover, which is postulated to be associated with synaptogenesis, neurogenesis, and maturation of neurons.[31] Of these, two studies measured Cho concentration in the B/L hippocampus, with contrasting results. Ende et al. In 2000 demonstrated a significant elevation in Cho levels in B/L hippocampus after ECT, while Jorgensen et al.

In 2015 failed to replicate the same finding.[33],[38] Cho levels have also been studied in the amygdala, ACC, and the DLPFC. However, none of these studies showed a significant increase or decrease in Cho levels before and after ECT in the respective brain regions studied. In addition, no significant difference was seen in the pre-ECT Cho levels of patients compared to healthy controls.[34],[36],[37]In review, we must admit that MRSI studies are still at a preliminary stage with significant heterogeneity in ECT protocols, patient population, and regions of the brain studied. At this stage, it is difficult to draw any firm conclusions except to acknowledge the fact that the more recent studies – Njau et al., 2017, Cano, 2017, and Jorgensen et al., 2015 – have shown decrease in NAA concentration and no increase in Cho levels [38],[39],[40] – as opposed to the earlier studies by Ende et al.[33] The view offered by the more recent studies is one of a neuroinflammatory models of action of ECT, probably driving neuroplasticity in the hippocampus.

This would offer a mechanistic understanding of both clinical response and the phenomenon of cognitive impairment associated with ECT. However, this conclusion is based on conjecture, and more work needs to be done in this area. Body Fluid Biochemical Marker Studies Another line of evidence for analyzing the effect of ECT on the human brain is the study of concentration of neurotrophins in the plasma or serum. Neurotrophins are small protein molecules which mediate neuronal survival and development.

The most prominent among these is brain-derived neurotrophic factor (BDNF) which plays an important role in neuronal survival, plasticity, and migration.[50] A neurotrophic theory of mood disorders was suggested which hypothesized that depressive disorders are associated with a decreased expression of BDNF in the limbic structures, resulting in the atrophy of these structures.[51] It was also postulated that antidepressant treatment has a neurotrophic effect which reverses the neuronal cell loss, thereby producing a therapeutic effect. It has been well established that BDNF is decreased in mood disorders.[52] It has also been shown that clinical improvement of depression is associated with increase in BDNF levels.[53] Thus, serum BDNF levels have been tentatively proposed as a biomarker for treatment response in depression. Recent meta-analytic evidence has shown that ECT is associated with significant increase in serum BDNF levels in patients with major depressive disorder.[54] Considering that BDNF is a potent stimulator of neurogenesis, the elevation of serum BDNF levels following ECT lends further credence to the theory that ECT leads to neurogenesis in the hippocampus and other limbic structures, which, in turn, mediates the therapeutic action of ECT. Cognitive Impairment Studies Cognitive impairment has always been the single-most important side effect associated with ECT.[55] Concerns regarding long-term cognitive impairment surfaced soon after the introduction of ECT and since then has grown to become one of the most controversial aspects of ECT.[56] Anti-ECT groups have frequently pointed out to cognitive impairment following ECT as evidence of ECT causing brain damage.[56] A meta-analysis by Semkovska and McLoughlin in 2010 is one of the most detailed studies which had attempted to settle this long-standing debate.[57] The authors reviewed 84 studies (2981 participants), which had used a combined total of 22 standardized neuropsychological tests assessing various cognitive functions before and after ECT in patients diagnosed with major depressive disorder.

The different cognitive domains reviewed included processing speed, attention/working memory, verbal episodic memory, visual episodic memory, spatial problem-solving, executive functioning, and intellectual ability. The authors concluded that administration of ECT for depression is associated with significant cognitive impairment in the first few days after ECT administration. However, it was also seen that impairment in cognitive functioning resolved within a span of 2 weeks and thereafter, a majority of cognitive domains even showed mild improvement compared to the baseline performance. It was also demonstrated that not a single cognitive domain showed persistence of impairment beyond 15 days after ECT.Memory impairment following ECT can be analyzed broadly under two conceptual schemes – one that classifies memory impairment as objective memory impairment and subjective memory impairment and the other that classifies it as impairment in anterograde memory versus impairment in retrograde memory.

Objective memory can be roughly defined as the ability to retrieve stored information and can be measured by various standardized neuropsychological tests. Subjective memory or meta-memory, on the other hand, refers to the ability to make judgments about one's ability to retrieve stored information.[58] As described previously, it has been conclusively demonstrated that anterograde memory impairment does not persist beyond 2 weeks after ECT.[57] However, one of the major limitations of this meta-analysis was the lack of evidence on retrograde amnesia following ECT. This is particularly unfortunate considering that it is memory impairment – particularly retrograde amnesia which has received the most attention.[59] In addition, reports of catastrophic retrograde amnesia have been repeatedly held up as sensational evidence of the lasting brain damage produced by ECT.[59] Admittedly, studies on retrograde amnesia are fewer and less conclusive than on anterograde amnesia.[60],[61] At present, the results are conflicting, with some studies finding some impairment in retrograde memory – particularly autobiographical retrograde memory up to 6 months after ECT.[62],[63],[64],[65] However, more recent studies have failed to support this finding.[66],[67] While they do demonstrate an impairment in retrograde memory immediately after ECT, it was seen that this deficit returned to pre-ECT levels within a span of 1–2 months and improved beyond baseline performance at 6 months post ECT.[66] Adding to the confusion are numerous factors which confound the assessment of retrograde amnesia. It has been shown that depressive symptoms can produce significant impairment of retrograde memory.[68],[69] It has also been demonstrated that sine-wave ECT produces significantly more impairment of retrograde memory as compared to brief-pulse ECT.[70] However, from the 1990s onward, sine-wave ECT has been completely replaced by brief-pulse ECT, and it is unclear as to the implications of cognitive impairment from the sine-wave era in contemporary ECT practice.Another area of concern are reports of subjective memory impairment following ECT.

One of the pioneers of research into subjective memory impairment were Squire and Chace who published a series of studies in the 1970s demonstrating the adverse effect of bilateral ECT on subjective assessment of memory.[62],[63],[64],[65] However, most of the studies conducted post 1980 – from when sine-wave ECT was replaced by brief-pulse ECT report a general improvement in subjective memory assessments following ECT.[71] In addition, most of the recent studies have failed to find a significant association between measures of subjective and objective memory.[63],[66],[70],[72],[73],[74] It has also been shown that subjective memory impairment is strongly associated with the severity of depressive symptoms.[75] In light of these facts, the validity and value of measures of subjective memory impairment as a marker of cognitive impairment and brain damage following ECT have been questioned. However, concerns regarding subjective memory impairment and catastrophic retrograde amnesia continue to persist, with significant dissonance between the findings of different research groups and patient self-reports in various media.[57]Some studies reported the possibility of ECT being associated with the development of subsequent dementia.[76],[77] However, a recent large, well-controlled prospective Danish study found that the use of ECT was not associated with elevated incidence of dementia.[78] Conclusion Our titular question is whether ECT leads to brain damage, where damage indicates destruction or degeneration of nerves or nerve tracts in the brain, which leads to loss of function. This issue was last addressed by Devanand et al. In 1994 since which time our understanding of ECT has grown substantially, helped particularly by the advent of modern-day neuroimaging techniques which we have reviewed in detail.

And, what these studies reveal is rather than damaging the brain, ECT has a neuromodulatory effect on the brain. The various lines of evidence – structural neuroimaging studies, functional neuroimaging studies, neurochemical and metabolic studies, and serum BDNF studies all point toward this. These neuromodulatory changes have been localized to the hippocampus, amygdala, and certain other parts of the limbic system. How exactly these changes mediate the improvement of depressive symptoms is a question that remains unanswered.

However, there is little by way of evidence from neuroimaging studies which indicates that ECT causes destruction or degeneration of neurons. Though cognitive impairment studies do show that there is objective impairment of certain functions – particularly memory immediately after ECT, these impairments are transient with full recovery within a span of 2 weeks. Perhaps, the single-most important unaddressed concern is retrograde amnesia, which has been shown to persist for up to 2 months post ECT. In this regard, the recent neurometabolic studies have offered a tentative mechanism of action of ECT, producing a transient inflammation in the limbic cortex, which, in turn, drives neurogenesis, thereby exerting a neuromodulatory effect.

This hypothesis would explain both the cognitive adverse effects of ECT – due to the transient inflammation – and the long-term improvement in mood – neurogenesis in the hippocampus. Although unproven at present, such a hypothesis would imply that cognitive impairment is tied in with the mechanism of action of ECT and not an indicator of damage to the brain produced by ECT.The review of literature suggests that ECT does cause at least structural and functional changes in the brain, and these are in all probability related to the effects of the ECT. However, these cannot be construed as brain damage as is usually understood. Due to the relative scarcity of data that directly examines the question of whether ECT causes brain damage, it is not possible to conclusively answer this question.

However, in light of enduring ECT survivor accounts, there is a need to design studies that specifically answer this question.Financial support and sponsorshipNil.Conflicts of interestThere are no conflicts of interest. References 1.Payne NA, Prudic J. Electroconvulsive therapy. Part I.

A perspective on the evolution and current practice of ECT. J Psychiatr Pract 2009;15:346-68. 2.Lauber C, Nordt C, Falcato L, Rössler W. Can a seizure help?.

The public's attitude toward electroconvulsive therapy. Psychiatry Res 2005;134:205-9. 3.Stefanazzi M. Is electroconvulsive therapy (ECT) ever ethically justified?.

If so, under what circumstances. HEC Forum 2013;25:79-94. 4.Devanand DP, Dwork AJ, Hutchinson ER, Bolwig TG, Sackeim HA. Does ECT alter brain structure?.

Am J Psychiatry 1994;151:957-70. 5.Devanand DP. Does electroconvulsive therapy damage brain cells?. Semin Neurol 1995;15:351-7.

6.Pearsall J, Trumble B, editors. The Oxford English Reference Dictionary. 2nd ed. Oxford, England.

New York. Oxford University Press. 1996. 7.Collin PH.

Dictionary of Medical Terms. 4th ed. London. Bloomsbury.

2004. 8.Hajdu SI. Entries on laboratory medicine in the first illustrated medical dictionary. Ann Clin Lab Sci 2005;35:465-8.

9.Mander AJ, Whitfield A, Kean DM, Smith MA, Douglas RH, Kendell RE. Cerebral and brain stem changes after ECT revealed by nuclear magnetic resonance imaging. Br J Psychiatry 1987;151:69-71. 10.Coffey CE, Weiner RD, Djang WT, Figiel GS, Soady SA, Patterson LJ, et al.

Brain anatomic effects of electroconvulsive therapy. A prospective magnetic resonance imaging study. Arch Gen Psychiatry 1991;48:1013-21. 11.Scott AI, Douglas RH, Whitfield A, Kendell RE.

Time course of cerebral magnetic resonance changes after electroconvulsive therapy. Br J Psychiatry 1990;156:551-3. 12.Pande AC, Grunhaus LJ, Aisen AM, Haskett RF. A preliminary magnetic resonance imaging study of ECT-treated depressed patients.

Biol Psychiatry 1990;27:102-4. 13.Coffey CE, Figiel GS, Djang WT, Sullivan DC, Herfkens RJ, Weiner RD. Effects of ECT on brain structure. A pilot prospective magnetic resonance imaging study.

Am J Psychiatry 1988;145:701-6. 14.Qiu H, Li X, Zhao W, Du L, Huang P, Fu Y, et al. Electroconvulsive therapy-Induced brain structural and functional changes in aldactone 100mg tablet major depressive disorders. A longitudinal study.

Med Sci Monit 2016;22:4577-86. 15.Kunigiri G, Jayakumar PN, Janakiramaiah N, Gangadhar BN. MRI T2 relaxometry of brain regions and cognitive dysfunction following electroconvulsive therapy. Indian J Psychiatry 2007;49:195-9.

[PUBMED] [Full text] 16.Pirnia T, Joshi SH, Leaver AM, Vasavada M, Njau S, Woods RP, et al. Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex. Transl Psychiatry 2016;6:e832. 17.Szabo K, Hirsch JG, Krause M, Ende G, Henn FA, Sartorius A, et al.

Diffusion weighted MRI in the early phase after electroconvulsive therapy. Neurol Res 2007;29:256-9. 18.Nordanskog P, Dahlstrand U, Larsson MR, Larsson EM, Knutsson L, Johanson A. Increase in hippocampal volume after electroconvulsive therapy in patients with depression.

A volumetric magnetic resonance imaging study. J ECT 2010;26:62-7. 19.Nordanskog P, Larsson MR, Larsson EM, Johanson A. Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression.

Acta Psychiatr Scand 2014;129:303-11. 20.Tendolkar I, van Beek M, van Oostrom I, Mulder M, Janzing J, Voshaar RO, et al. Electroconvulsive therapy increases hippocampal and amygdala volume in therapy refractory depression. A longitudinal pilot study.

Psychiatry Res 2013;214:197-203. 21.Dukart J, Regen F, Kherif F, Colla M, Bajbouj M, Heuser I, et al. Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders. Proc Natl Acad Sci U S A 2014;111:1156-61.

22.Abbott CC, Jones T, Lemke NT, Gallegos P, McClintock SM, Mayer AR, et al. Hippocampal structural and functional changes associated with electroconvulsive therapy response. Transl Psychiatry 2014;4:e483. 23.Lyden H, Espinoza RT, Pirnia T, Clark K, Joshi SH, Leaver AM, et al.

Electroconvulsive therapy mediates neuroplasticity of white matter microstructure in major depression. Transl Psychiatry 2014;4:e380. 24.Bouckaert F, De Winter FL, Emsell L, Dols A, Rhebergen D, Wampers M, et al. Grey matter volume increase following electroconvulsive therapy in patients with late life depression.

A longitudinal MRI study. J Psychiatry Neurosci 2016;41:105-14. 25.Ota M, Noda T, Sato N, Okazaki M, Ishikawa M, Hattori K, et al. Effect of electroconvulsive therapy on gray matter volume in major depressive disorder.

J Affect Disord 2015;186:186-91. 26.Zeng J, Luo Q, Du L, Liao W, Li Y, Liu H, et al. Reorganization of anatomical connectome following electroconvulsive therapy in major depressive disorder. Neural Plast 2015;2015:271674.

27.van Eijndhoven P, Mulders P, Kwekkeboom L, van Oostrom I, van Beek M, Janzing J, et al. Bilateral ECT induces bilateral increases in regional cortical thickness. Transl Psychiatry 2016;6:e874. 28.Bouckaert F, Dols A, Emsell L, De Winter FL, Vansteelandt K, Claes L, et al.

Relationship between hippocampal volume, serum BDNF, and depression severity following electroconvulsive therapy in late-life depression. Neuropsychopharmacology 2016;41:2741-8. 29.Depping MS, Nolte HM, Hirjak D, Palm E, Hofer S, Stieltjes B, et al. Cerebellar volume change in response to electroconvulsive therapy in patients with major depression.

Prog Neuropsychopharmacol Biol Psychiatry 2017;73:31-5. 30.Joshi SH, Espinoza RT, Pirnia T, Shi J, Wang Y, Ayers B, et al. Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression. Biol Psychiatry 2016;79:282-92.

31.Wade BS, Joshi SH, Njau S, Leaver AM, Vasavada M, Woods RP, et al. Effect of electroconvulsive therapy on striatal morphometry in major depressive disorder. Neuropsychopharmacology 2016;41:2481-91. 32.Wolf RC, Nolte HM, Hirjak D, Hofer S, Seidl U, Depping MS, et al.

Structural network changes in patients with major depression and schizophrenia treated with electroconvulsive therapy. Eur Neuropsychopharmacol 2016;26:1465-74. 33.Ende G, Braus DF, Walter S, Weber-Fahr W, Henn FA. The hippocampus in patients treated with electroconvulsive therapy.

A proton magnetic resonance spectroscopic imaging study. Arch Gen Psychiatry 2000;57:937-43. 34.Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B. Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression.

Psychol Med 2003;33:1277-84. 35.Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B. Neurotrophic effects of electroconvulsive therapy. A proton magnetic resonance study of the left amygdalar region in patients with treatment-resistant depression.

Neuropsychopharmacology 2003;28:720-5. 36.Pfleiderer B, Michael N, Erfurth A, Ohrmann P, Hohmann U, Wolgast M, et al. Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Res 2003;122:185-92.

37.Merkl A, Schubert F, Quante A, Luborzewski A, Brakemeier EL, Grimm S, et al. Abnormal cingulate and prefrontal cortical neurochemistry in major depression after electroconvulsive therapy. Biol Psychiatry 2011;69:772-9. 38.Jorgensen A, Magnusson P, Hanson LG, Kirkegaard T, Benveniste H, Lee H, et al.

Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression. Acta Psychiatr Scand 2016;133:154-64. 39.Njau S, Joshi SH, Espinoza R, Leaver AM, Vasavada M, Marquina A, et al. Neurochemical correlates of rapid treatment response to electroconvulsive therapy in patients with major depression.

J Psychiatry Neurosci 2017;42:6-16. 40.Cano M, Martínez-Zalacaín I, Bernabéu-Sanz Á, Contreras-Rodríguez O, Hernández-Ribas R, Via E, et al. Brain volumetric and metabolic correlates of electroconvulsive therapy for treatment-resistant depression. A longitudinal neuroimaging study.

Transl Psychiatry 2017;7:e1023. 41.Figiel GS, Krishnan KR, Doraiswamy PM. Subcortical structural changes in ECT-induced delirium. J Geriatr Psychiatry Neurol 1990;3:172-6.

42.Rotheneichner P, Lange S, O'Sullivan A, Marschallinger J, Zaunmair P, Geretsegger C, et al. Hippocampal neurogenesis and antidepressive therapy. Shocking relations. Neural Plast 2014;2014:723915.

43.Singh A, Kar SK. How electroconvulsive therapy works?. Understanding the neurobiological mechanisms. Clin Psychopharmacol Neurosci 2017;15:210-21.

44.Gbyl K, Videbech P. Electroconvulsive therapy increases brain volume in major depression. A systematic review and meta-analysis. Acta Psychiatr Scand 2018;138:180-95.

45.Oltedal L, Narr KL, Abbott C, Anand A, Argyelan M, Bartsch H, et al. Volume of the human hippocampus and clinical response following electroconvulsive therapy. Biol Psychiatry 2018;84:574-81. 46.Breggin PR.

Brain-Disabling Treatments in Psychiatry. Drugs, Electroshock, and the Role of the FDA. New York. Springer Pub.

Co.. 1997. 47.Posse S, Otazo R, Dager SR, Alger J. MR spectroscopic imaging.

Principles and recent advances. J Magn Reson Imaging 2013;37:1301-25. 48.Simmons ML, Frondoza CG, Coyle JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies.

Neuroscience 1991;45:37-45. 49.Obergriesser T, Ende G, Braus DF, Henn FA. Long-term follow-up of magnetic resonance-detectable choline signal changes in the hippocampus of patients treated with electroconvulsive therapy. J Clin Psychiatry 2003;64:775-80.

50.Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity. The synaptic consolidation hypothesis. Prog Neurobiol 2005;76:99-125.

51.Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006;59:1116-27. 52.Bocchio-Chiavetto L, Bagnardi V, Zanardini R, Molteni R, Nielsen MG, Placentino A, et al.

Serum and plasma BDNF levels in major depression. A replication study and meta-analyses. World J Biol Psychiatry 2010;11:763-73. 53.Brunoni AR, Lopes M, Fregni F.

A systematic review and meta-analysis of clinical studies on major depression and BDNF levels. Implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol 2008;11:1169-80. 54.Rocha RB, Dondossola ER, Grande AJ, Colonetti T, Ceretta LB, Passos IC, et al.

Increased BDNF levels after electroconvulsive therapy in patients with major depressive disorder. A meta-analysis study. J Psychiatr Res 2016;83:47-53. 55.UK ECT Review Group.

Efficacy and safety of electroconvulsive therapy in depressive disorders. A systematic review and meta-analysis. Lancet 2003;361:799-808. 56.57.Semkovska M, McLoughlin DM.

Objective cognitive performance associated with electroconvulsive therapy for depression. A systematic review and meta-analysis. Biol Psychiatry 2010;68:568-77. 58.Tulving E, Madigan SA.

Memory and verbal learning. Annu Rev Psychol 1970;21:437-84. 59.Rose D, Fleischmann P, Wykes T, Leese M, Bindman J. Patients' perspectives on electroconvulsive therapy.

Systematic review. BMJ 2003;326:1363. 60.Semkovska M, McLoughlin DM. Measuring retrograde autobiographical amnesia following electroconvulsive therapy.

Historical perspective and current issues. J ECT 2013;29:127-33. 61.Fraser LM, O'Carroll RE, Ebmeier KP. The effect of electroconvulsive therapy on autobiographical memory.

A systematic review. J ECT 2008;24:10-7. 62.Squire LR, Chace PM. Memory functions six to nine months after electroconvulsive therapy.

Arch Gen Psychiatry 1975;32:1557-64. 63.Squire LR, Slater PC. Electroconvulsive therapy and complaints of memory dysfunction. A prospective three-year follow-up study.

Br J Psychiatry 1983;142:1-8. 64.Squire LR, Slater PC, Miller PL. Retrograde amnesia and bilateral electroconvulsive therapy. Long-term follow-up.

Arch Gen Psychiatry 1981;38:89-95. 65.Squire LR, Wetzel CD, Slater PC. Memory complaint after electroconvulsive therapy. Assessment with a new self-rating instrument.

Biol Psychiatry 1979;14:791-801. 66.Calev A, Nigal D, Shapira B, Tubi N, Chazan S, Ben-Yehuda Y, et al. Early and long-term effects of electroconvulsive therapy and depression on memory and other cognitive functions. J Nerv Ment Dis 1991;179:526-33.

67.Sackeim HA, Prudic J, Devanand DP, Nobler MS, Lisanby SH, Peyser S, et al. A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities. Arch Gen Psychiatry 2000;57:425-34. 68.Abrams R.

Does brief-pulse ECT cause persistent or permanent memory impairment?. J ECT 2002;18:71-3. 69.Peretti CS, Danion JM, Grangé D, Mobarek N. Bilateral ECT and autobiographical memory of subjective experiences related to melancholia.

A pilot study. J Affect Disord 1996;41:9-15. 70.Weiner RD, Rogers HJ, Davidson JR, Squire LR. Effects of stimulus parameters on cognitive side effects.

Ann N Y Acad Sci 1986;462:315-25. 71.Prudic J, Peyser S, Sackeim HA. Subjective memory complaints. A review of patient self-assessment of memory after electroconvulsive therapy.

J ECT 2000;16:121-32. 72.Sackeim HA, Prudic J, Devanand DP, Kiersky JE, Fitzsimons L, Moody BJ, et al. Effects of stimulus intensity and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. N Engl J Med 1993;328:839-46.

73.Frith CD, Stevens M, Johnstone EC, Deakin JF, Lawler P, Crow TJ. Effects of ECT and depression on various aspects of memory. Br J Psychiatry 1983;142:610-7. 74.Ng C, Schweitzer I, Alexopoulos P, Celi E, Wong L, Tuckwell V, et al.

Efficacy and cognitive effects of right unilateral electroconvulsive therapy. J ECT 2000;16:370-9. 75.Coleman EA, Sackeim HA, Prudic J, Devanand DP, McElhiney MC, Moody BJ. Subjective memory complaints prior to and following electroconvulsive therapy.

Biol Psychiatry 1996;39:346-56. 76.Berggren Š, Gustafson L, Höglund P, Johanson A. A long-term longitudinal follow-up of depressed patients treated with ECT with special focus on development of dementia. J Affect Disord 2016;200:15-24.

77.Brodaty H, Hickie I, Mason C, Prenter L. A prospective follow-up study of ECT outcome in older depressed patients. J Affect Disord 2000;60:101-11. 78.Osler M, Rozing MP, Christensen GT, Andersen PK, Jørgensen MB.

Electroconvulsive therapy and risk of dementia in patients with affective disorders. A cohort study. Lancet Psychiatry 2018;5:348-56. Correspondence Address:Dr.

Shubh Mohan SinghDepartment of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh IndiaSource of Support. None, Conflict of Interest. NoneDOI. 10.4103/psychiatry.IndianJPsychiatry_239_19 Tables [Table 1], [Table 2].

Is aldactone safe

A large, Phase 3 study testing a Covid-19 vaccine being developed by AstraZeneca and the University of is aldactone safe Oxford at dozens of sites across the U.S para que sirve aldactone 100. Has been put on hold due to a suspected serious adverse reaction in a participant in the United Kingdom.A spokesperson for AstraZeneca, a frontrunner in the race for a Covid-19 vaccine, said in a statement is aldactone safe that the company’s “standard review process triggered a pause to vaccination to allow review of safety data.” In a follow-up statement, AstraZeneca said it initiated the study hold. The nature of the adverse reaction and when it happened were also not immediately known, though the participant is expected to recover, according to an individual familiar with the matter. Advertisement The spokesperson described the pause as “a routine is aldactone safe action which has to happen whenever there is a potentially unexplained illness in one of the trials, while it is investigated, ensuring we maintain the integrity of the trials.” The spokesperson also said that the company is “working to expedite the review of the single event to minimize any potential impact on the trial timeline.”An individual familiar with the development said researchers had been told the hold was placed on the trial out of “an abundance of caution.” A second individual familiar with the matter, who also spoke on condition of anonymity, said the finding is having an impact on other AstraZeneca vaccine trials underway — as well as on the clinical trials being conducted by other vaccine manufacturers.advertisement Clinical holds are not uncommon, and it’s unclear how long AstraZeneca’s might last. But the is aldactone safe progress of the company’s trial — and those of all Covid-19 vaccines in development — are being closely watched given the pressing need for new ways to curb the global pandemic.

There are currently nine vaccine candidates in Phase 3 trials. AstraZeneca’s is the first Phase 3 Covid-19 vaccine trial known to have been put on hold.Researchers running other trials are now looking for similar cases of adverse reactions by combing through databases reviewed by a so-called Data and Safety Monitoring Board, is aldactone safe the second person said.AstraZeneca only began its Phase 3 trial in the U.S. In late August. The U.S is aldactone safe. Trial is currently taking place at 62 sites across the country, according to clinicaltrials.gov, a government registry, is aldactone safe though some have not yet started enrolling participants.

Phase 2/3 trials were previously started in the U.K., Brazil, and South Africa.There are a number of different reactions that can qualify as suspected serious adverse reactions, symptoms that require hospitalization, life-threatening illness and even death. It was also not immediately clear which clinical is aldactone safe trial the adverse reaction occurred in, though a clear possibility is the Phase 2/3 trial underway in the U.K. While it’s still unclear how severe and rare the adverse event may be, the finding could impact how quickly efficacy data from the U.K. Trial will get redirected here be is aldactone safe available. Those data are considered integral to any bid to seek an emergency use authorization for the vaccine from is aldactone safe the U.S.

Food and Drug Administration — and potentially jeopardize President Trump’s efforts to fast-track a vaccine ahead of the November election.A Phase 1/2 study published in July reported that about 60% of 1,000 participants given the vaccine experienced side effects. All of the side effects, which included fever, headaches, is aldactone safe muscle pain, and injection site reactions, were deemed mild or moderate. All of is aldactone safe the side effects reported also subsided during the course of the study. The vaccine — known as AZD1222 — uses an adenovirus that carries a gene for one of the proteins in SARS-CoV-2, the virus that causes Covid-19. The adenovirus is designed to induce the immune system to generate a is aldactone safe protective response against SARS-2.

The platform has not been used in an approved vaccine, but has been tested in experimental vaccines against other viruses, including the Ebola virus. The Phase is aldactone safe 3 trial in the U.S. Aims to enroll about 30,000 participants at 80 sites across the country, according to a release last is aldactone safe week from the National Institutes of Health. It was not immediately clear what steps were being taken at study sites across the U.S. In response to is aldactone safe the hold.

Clinical holds in ongoing studies often involve a pause in recruiting new participants and dosing existing ones, unless it’s deemed in the interest of participant safety to continue dosing.In the statement from AstraZeneca, the company spokesperson noted that “in large trials illnesses will happen by chance but must be independently reviewed to check this carefully.” The spokesperson also said the company is “committed to the safety of our participants and the highest standards of conduct in our trials.”.

A large, Phase 3 study testing a Covid-19 vaccine being developed buy generic aldactone online by AstraZeneca and the University of Oxford at dozens of sites across the U.S. Has been put on hold due to a suspected serious adverse reaction in a participant in the United Kingdom.A spokesperson for AstraZeneca, a frontrunner in the race for a Covid-19 vaccine, said in a statement that the company’s “standard review process triggered a pause to vaccination to allow review of safety data.” In a follow-up buy generic aldactone online statement, AstraZeneca said it initiated the study hold. The nature of the adverse reaction and when it happened were also not immediately known, though the participant is expected to recover, according to an individual familiar with the matter. Advertisement The spokesperson described the pause as “a routine action which has to happen whenever there is a potentially unexplained illness in one of the trials, while it is investigated, ensuring we maintain the integrity of the trials.” The spokesperson also said that the buy generic aldactone online company is “working to expedite the review of the single event to minimize any potential impact on the trial timeline.”An individual familiar with the development said researchers had been told the hold was placed on the trial out of “an abundance of caution.” A second individual familiar with the matter, who also spoke on condition of anonymity, said the finding is having an impact on other AstraZeneca vaccine trials underway — as well as on the clinical trials being conducted by other vaccine manufacturers.advertisement Clinical holds are not uncommon, and it’s unclear how long AstraZeneca’s might last. But the progress of the company’s trial buy generic aldactone online — and those of all Covid-19 vaccines in development — are being closely watched given the pressing need for new ways to curb the global pandemic.

There are currently nine vaccine candidates in Phase 3 trials. AstraZeneca’s is the first Phase 3 Covid-19 vaccine trial known to have been put on hold.Researchers running other trials are now looking for similar cases of adverse reactions by combing through databases reviewed by a so-called Data and Safety Monitoring Board, the second person said.AstraZeneca only began its buy generic aldactone online Phase 3 trial in the U.S. In late August. The U.S buy generic aldactone online. Trial is buy generic aldactone online currently taking place at 62 sites across the country, according to clinicaltrials.gov, a government registry, though some have not yet started enrolling participants.

Phase 2/3 trials were previously started in the U.K., Brazil, and South Africa.There are a number of different reactions that can qualify as suspected serious adverse reactions, symptoms that require hospitalization, life-threatening illness and even death. It was also not immediately clear which clinical trial the adverse reaction buy generic aldactone online occurred in, though a clear possibility is the Phase 2/3 trial underway in the U.K. While it’s still unclear how severe and rare the adverse event may be, the finding could impact how quickly efficacy data from the U.K. Trial will be buy generic aldactone online available. Those data are considered integral to any bid to seek an emergency use authorization buy generic aldactone online for the vaccine from the U.S.

Food and Drug Administration — and potentially jeopardize President Trump’s efforts to fast-track a vaccine ahead of the November election.A Phase 1/2 study published in July reported that about 60% of 1,000 participants given the vaccine experienced side effects. All of the side buy generic aldactone online effects, which included fever, headaches, muscle pain, and injection site reactions, were deemed mild or moderate. All of the side buy generic aldactone online effects reported also subsided during the course of the study. The vaccine — known as AZD1222 — uses an adenovirus that carries a gene for one of the proteins in SARS-CoV-2, the virus that causes Covid-19. The adenovirus is designed to induce the immune system to generate buy generic aldactone online a protective response against SARS-2.

The platform has not been used in an approved vaccine, but has been tested in experimental vaccines against other viruses, including the Ebola virus. The Phase buy generic aldactone online 3 trial in the U.S. Aims to enroll about 30,000 participants at 80 sites across the country, according to a release last week from the buy generic aldactone online National Institutes of Health. It was not immediately clear what steps were being taken at study sites across the U.S. In response buy generic aldactone online to the hold.

Clinical holds in ongoing studies often involve a pause in recruiting new participants and dosing existing ones, unless it’s deemed in the interest of participant safety to continue dosing.In the statement from AstraZeneca, the company spokesperson noted that “in large trials illnesses will happen by chance but must be independently reviewed to check this carefully.” The spokesperson also said the company is “committed to the safety of our participants and the highest standards of conduct in our trials.”.

Back To Top